Optical properties of polymeric materials for concentrator photovoltaic systems

R.H. French, J.M. Rodríguez-Parada, M.K. Yang, R.A. Derryberry, N.T. Pfeiffenberger

Abstract

As part of our research on materials for concentrator photovoltaics (CPV), we are evaluating the optical properties and solar radiation durability of a number of polymeric materials with potential in CPV applications. For optical materials in imaging or non-imaging optical systems, detailed knowledge of the wavelength-dependent complex index of refraction is important for system design and performance, yet optical properties for many polymeric systems are not available in the literature. Here we report the index of refraction, optical absorbance, haze, and Urbach edge analysis results of various polymers of interest for CPV systems. These values were derived from ellipsometry and from using a VUV-VASE and transmission based absorbance spectroscopy on thick film samples.

Ethylene backbone polymers such as polyvinylbutyral (PVB) sheet (e.g., DuPont TM PV5200), and ethylene co-polymers such as poly(ethylene-co-vinyl acetate) (EVA) (e.g., DuPont TM Elvax® PV1400), and poly(ethylene-co-methacrylic acid metal salt) ionomer sheet (e.g., DuPont TM PV3300) have applications as encapsulants in crystalline silicon (c-Si) and other flat plate PV applications. These materials are available with both a wide variety of polymer compositions and additive packages which affect their optical properties such as the UV absorption edge. Even materials such as DuPont’s Kapton® polyimide films, which are used behind the PV cell for their electrically insulating properties, have optical requirements, and we have also characterized these materials.

The detailed optical properties of these materials will be useful in the design of the geometrical optics of a CPV system and optimization of the system’s optical throughput. This information will also provide insights into the system’s optical absorption. This is important, for example in the UV, where this absorption can impact the radiation durability of the materials.

1. Introduction

Concentrating photovoltaic (CPV) systems and their optical materials have come from a wide background of similar optical reduction technologies. For example, they can be closely related to the field of optical lithography [1], which relies greatly on reduction optics of liquids for precise nanoscale patterning. This carries over to the primary optics (those used with 1 sun irradiance) and the secondary optics (those used at multiple sun irradiances) in a CPV system. According to Swanson [2], CPV systems can be divided into low, medium, and high concentrators, as seen in Fig. 1 [2]. Low concentrators employ 1–10 × concentration with no tracking of the sun, and cells made of silicon or thin film. Medium concentrators employ 12–100 × concentration with one- or two-axis tracking of the sun, and cells made of silicon. High concentrators employ 200–2000 × concentration with high precision two-axis tracking of the sun, and multi-junction III–V cells.

For optical materials in imaging or non-imaging optical systems, detailed knowledge of the wavelength-dependent complex index of refraction, \(n(\lambda) = n(\lambda) + ik(\lambda) \), is important for the optical system’s design and performance. The index, \(n \), and the extinction coefficient, \(k \) (which is directly related to the optical absorbance \(\alpha = 4\pi n k(\lambda) \)), give insights into the system’s optical performance. The index of refraction determines reflectance losses at air/polymer,
polymer/polymer and polymer/inorganic interfaces, and is important for matching or optimizing the numerical aperture (NA) of the reduction optical system at all points in the optical path. The extinction coefficient is critical to determine optical losses in the system, including the passage of ultraviolet (UV) through the system. The absorption of UV light by the optical materials can also contribute to optical degradation of the materials due to photodarkening and photobleaching and other types of degradative processes and reduced performance over time [3].

CPV is typically non-imaging [4]; therefore, cost-effective materials that do not have perfect optical clarity are still of interest. For optics with short throw lengths (or focal lengths), haze can help homogenize the light. Haze can also be important for optics with long throw lengths, such as primary optics, refractive lenses, and reflective mirrors in which specularity is important. The distinctness of image or DOI [5] is the deviation of the direction of light propagation from the regular direction via scattering during transmission or reflection and can be related to haze. DOI is useful for characterization of the visual appearance of CPV materials.

In addition to the refractive optical materials, many CPV systems utilize mirrors; therefore, materials for multilayer reflectors are also of interest. Metallized fluoropolymers for back side mirrors used in CPV or concentrating solar power optics have reflectance values above 90% after 3.5–4 years of exposure [6]. Their use in concentrated solar power technologies would not be limited if their specularity could be sufficiently improved, for example by reducing the haze which can be associated with scattering and reduced specularity on a reflector [6]. The specularity was determined in both a 25 mrad (milliradian) cone and a 7 mrad cone, and for mirror applications which have long optical path (or "throw" lengths); the tighter 7 mrad specularity measurement is important. CSP tower applications, which typically have long distances from the reflecting mirror surface to the measurement is an object dependent value and varies based on sample thickness and bulk crystallinity, since all of the evaluations were performed on the same instrument and in the same orientation, haze can be a useful measurement for rank-ordering the polymer's clarity that arises from bulk and surface scattering. Prior research on the optical properties of polyimidies including Kapton®, Upilex®, and polyimide derivatives like TOR and CP were published by Russellet al. [21]. There have been also numerous studies on the index of refraction versus wavelength for PTFE [22], polyimides [23,24], polyster [25], and acrylics [26].

Wallner et al. [27,28] developed a fundamental understanding of the physical relationships between the material structure and solar optical properties, as well as the infrared optical properties, of transparent polymeric materials. Their studies included low- and high-temperature resistant polymer films such as polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polycarbonate (PC), polyimide (PI), and poly(tetrafluoro-ethylene-co-perfluoroalkylvinyl ether) (PFA) [29]. They have also tested the solar radiation durability of PC, PMMA and PET [30,31].

For potential CPV applications, we report the optical properties, including spectral index of refraction, optical absorbance, and haze, of various fluoropolymers, ethylene backbone polymers, and polyimides. The detailed optical properties of these materials will be useful in the design of the geometrical optics of a CPV system and optimization of the system's optical throughput. The information will also provide insights into the system's optical absorption. This is important, for example in the UV region, where this absorption can impact the radiation durability of the materials.
2. Experimental methods

2.1. Materials

The materials we report on here fall into three families: fluoropolymers, ethylene backbone polymers, and polyimides. **Fluoropolymers (FP):** Films of tetrafluoroethylene-hexafluoropropylene copolymer (Teflon® FEP 500A), ethylene-tetrafluoroethylene copolymer (Teflon® ETFE 500LZ), and polyvinylfluoride (Tedlar® PVF TR10AH9 and UT20BG3), were obtained from DuPont Fluoroproducts. The use of these materials in conventional PV modules is well documented [32]. **Ethylene backbone polymers (EBP):** Polyvinylbutyral (DuPont™ PV5200 PVB), poly(ethylene-co-methacrylic acid salts) (DuPont™ PV5300 Ionomer sheet), poly(ethylene-co-vinyl acetate) (Elvax® PV1400 resin), were obtained from DuPont Packaging and Industrial Polymers. Films of different thickness were made by melt pressing. **Polyimides (PI):** Kapton® H, Kapton® HN, and Kapton® E DuPont Electronic Technologies.

2.2. Spectroscopic Ellipsometry

Variable angle spectroscopic ellipsometry (VASE) [33–35] measurements were performed with a VUV-VASE® VU-302 [36], which has a range from 0.69 to 8.55 eV (1800 to 145 nm), and employs MgF2 polarizers and analyzers rather than the more common calcite optics. The spectrometer was upgraded from single beam to dual beam for more accurate transmission measurements and better instrument stability. The instrument has a MgF2 auto-retarder and is fully nitrogen-purged to avoid absorption of VUV light by ambient oxygen and water vapor, which is important at wavelengths below 200 nm. Light from both the deuterium lamp and the xenon lamp pass through a double-chamber Czerny-Turner type monochromator to provide wavelength selection and stray-light rejection. The spot diameter of light source on the surface of the sample is 2 mm. Computer-controlled slit widths adjust the bandwidth to insure adequate spectral resolution of optical features in the data. These include closely spaced interference oscillations, which arise in very thick films. A photomultiplier tube is utilized for signal detection in the ultraviolet. A stacked Si/InGaAs photodiode detector is used for longer wavelengths. Ellipsometric measurements were conducted using light incident at angles of 65–75° relative to normal on the front surface of the sample, the back of which was roughened with coarse polishing paper. The instrument measures the ellipsometric parameters Ψ and Δ, which are defined by [37]:

\[
\tan(\Psi) e^{i\Delta} = \frac{R_p}{R_s}
\]

where \(R_p/R_s\) is the complex ratio of the p and s-polarized components of the reflected amplitudes. These parameters were analyzed using the Fresnel equations [38] in a computer-based modeling technique, which includes a surface roughness layer to directly determine the optical constants [39,40]. An effective medium approximation (EMA) surface roughness layer was used since the surface roughness of the samples was small. The EMA surface roughness layer was used to model the ellipsometric data and determine the complex optical properties of the polymeric systems in question. Since surface scattering in ellipsometry does not impact the complex optical properties n and k determined, this technique is well established in the literature for optical property determination. VUV-VASE® VU-302 measurements for this experiment were taken from the wavelength range 145–1650 nm at multiple angles of incidence (65–75°). Variable angles improve confidence as light travels different paths through the film.

The ellipsometry data, taken from the film, was fit to determine the polymer film roughness, thickness non-uniformity, and complex refractive index [41]. An optical model was used to describe the film optical constants over the wide spectral range [42]. The film was modeled using initial optical constants from Woollam. A thin EMA surface roughness layer, consisting of 50/50 mix of organic film and void (n = 1) was used. In the initial stage, a Cauchy dispersion model was used to fit the thin region of 500–1550 nm. Then, the complete model was minimized by fitting the optical constants on a point-by-point basis over the full spectral range in which the data in each single wavelength is fit separately.

2.3. Optical absorbance and haze

The optical absorbance of free-standing films was determined by the center-mount absorbance method (Fig. 2) using a Cary 5000 UV–Vis–NIR spectrophotometer with a DRA-2500 integrating sphere [43]. The measured value of absorbance was divided
by the film thickness to obtain a value of optical absorbance per cm (base 10).

For films coated on ultrahigh purity fused silica substrates, once the transmission spectra of the film was determined, the film’s optical absorbance per cm (base 10) could be determined by:

\[
A/cm = \frac{\log_{10}[T_{\text{substrate}}/T_{\text{film}}]}{t_{\text{film}}}
\]

(2)

where \(T\) is the transmission, \(t\) is the thickness of the film, and \(A/cm\) is the absorbance per centimeter. Using multiple samples of different film thickness, one can then solve the resulting system of equations and determine the reproducibility and standard deviation of the optical absorbance per centimeter [44].

The calculation of optical absorbance assumes that the film is of homogenous composition and uniform thickness. Therefore, an integrating reflectance accessory is required and the reflectance measured is predominately specular [45]. Transmission-based measurements also require that the film thickness of the sample on the substrate be optimized for the dynamic range of the technique so that the transmittance of the film falls in the range from 3% to 90%. If the transmittance falls much below 1%, the accuracy of the measurement is severely degraded, and erroneous results appear.

Once the extinction coefficient, \(k\), and the base 10 optical absorbance per cm, \(A/cm\), have been determined, the base e optical absorption coefficient, \(z\), can be determined using Eq (3). The absorption coefficient, \(z\), corresponds to the attenuation of the light transmitted through the sample and is calculated on a natural logarithm basis. Since the absorbance per cm, \(A/cm\), is determined from the base 10 logarithm of the optical density given in Eq. (3), a value of \(\ln(10)\), or 2.302585, is introduced into Eq. (4). Both \(k\) and \(z\) are inherent optical properties of the material. On the other hand, absorbance per centimeter is frequently based only on transmission measurements, and thus neglects effects arising from the index mismatch between the film and substrate, thin film interference effects, and film non-uniformity effects.

The fundamental absorption edge spectra have been determined by:

\[
z = 4\pi k/\lambda
\]

(3)

where \(\lambda\) is the optical absorption coefficient (base e), \(\lambda\) is the wavelength of the light source, and \(k\) is the extinction coefficient.

The relationship between the base e absorption coefficient \(z\) and the base 10 absorption coefficient \(A\) is given by:

\[
A = \frac{\log_{10}(T_1) - \log_{10}(T_2)}{t} = \frac{1}{\ln(10)} \frac{\ln(T_1) - \ln(T_2)}{t} = \frac{1}{\ln(10)} z
\]

(4)

where \(T_1\) is the transmission of substrate, \(T_2\) is the transmission of film, and \(t\) is the thickness of film as given in Table 1.

The Cary 5000 UV–Vis–NIR spectrophotometer (Varian) is also used for the haze measurement. The instrument utilizes a hemispherical optical measuring system, with an integrating sphere, in which the specimen is placed flush against the sphere port. A unidirectional illumination with diffuse viewing geometry was used. The transmission (total and scattered) and reflectance (diffuse + specular and diffuse only; defined in Fig. 3) were measured using the ASTM D 1003 procedure B (Fig. 4). Eq. (5) was used to calculate the percent haze:

\[
\text{Haze} = \frac{T_d}{T_t} \times 100
\]

(5)

where \(T_d\) is the diffuse transmittance and \(T_t\) is the total transmittance.

The above measurements were conducted under the following conditions: The external DRA-2500 was installed into the spectrophotometer and aligned. UV-Vis-NIR spectra were, in general, acquired in the region 200–2500 nm using appropriate baseline correction (zero/baseline for %T and absorbance, zero \(x\) standard reference for reflectance, correction for spectral only). Indicative instrumental parameters were as follows: spectral bandwidth (SBW) = 4 nm (UV/Vis) or 16 nm (NIR); averaging time = 0.4 s; data interval = 2 nm; double beam mode using full slit height for %T and absorbance, reduced for %R. A mask over the sample port was used with a reduced slit for the reflectance data, and was in place during baseline and sample collection. A small spot kit (SSK) was used for the center mount absorbance data (not reflectance).

As in all experimental measurements, the accuracy of the measured values is a function of the sample and measurement apparatus. The inherent sensitivity of spectral transmission and absorbance measurements is affected by the optical path length.

Table 1

<table>
<thead>
<tr>
<th>Sample thickness (t) in mils (0.001 in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tedlar</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>FP</td>
</tr>
<tr>
<td>t</td>
</tr>
<tr>
<td>EBP</td>
</tr>
<tr>
<td>t</td>
</tr>
<tr>
<td>PI</td>
</tr>
<tr>
<td>t</td>
</tr>
</tbody>
</table>
of the sample, and the transmission drop that occurs as light transmits through the sample. As the transmission drop decreases, the accuracy of absorbance measurement decreases. A transmission difference of \(\sim 0.1\% \) is near the limit of the measurement method.

2.4. Urbach Analysis of Absorption Edges

Urbach edge analysis is a useful way to parametrically characterize a film’s optical absorption edge and to distinguish intrinsic and extrinsic contributions to the absorbance [44]. Urbach [46] originally observed that a material’s optical absorption for energies below the fundamental optical absorption edge is exponential in nature and can be characterized by the Urbach edge energy \(E_0 \) and the Urbach width \(W \), which is related to the slope of the Urbach edge (using the nm = eV conversion, \(I(nm) = 1239.8/E \) (eV)).

2.5. Urbach analysis of the absorption coefficient (\(\alpha \)) and the absorbance (\(A \))

For Urbach fits to \(\alpha \), either Eq. (6) is used

\[
\alpha(E) = H_\alpha \exp \left(\frac{E - E_{0\alpha}}{W_\alpha} \right)
\]

(6)

Where the absorption coefficient \(\alpha \) as a function \(E \) is characterized by the Urbach edge energy \(E_0 \) and the Urbach width \(W \). The intercept \(E_{0\alpha} \), energy at which \(\alpha = 1 \), is the quantity of interest.

For Urbach fits to \(A \), the following equation is used:

\[
A(E) = H_A \exp \left(\frac{E - E_{0A}}{W_A} \right)
\]

(7)

The intercept \(E_{0A} \), energy at which \(A = 1 \), is the quantity of interest. The relationship between \(E_{0\alpha} \) and \(E_{0A} \) is obtained as follows:

\[
A(E) = H_A \exp \left(\frac{E - E_{0A}}{W_A} \right) = \frac{\alpha}{\ln(10)} = \frac{H_A}{\ln(10)} \exp \left(\frac{E - E_{0\alpha}}{W_\alpha} \right)
\]

(8)

Note that Urbach actually fits the exponential equations shown above. This is done because the error statistics are known in data space \((A \) and \(\alpha \)), not in ln(data) space.

3. Lorentz oscillator modeling

The Lorentz oscillator (LO) [47] is a useful tool for studying the optical behavior of optical materials and for modeling complex optical properties. The optical properties of a Lorentz oscillator model can be solved analytically and represent an exact solution to Maxwell’s equations of light for the response of a simple harmonic oscillator to an electromagnetic wave. Using the quantum mechanical form of the Lorentz oscillator, and allowing the construction of models involving multiple oscillators, one can build models and determine their complex optical property responses. Consider the Lorentz oscillator equation for the complex dielectric function \((\varepsilon) \) as a function of photon frequency \((\omega) \)

\[
\varepsilon(\omega) = 1 + \frac{4\pi Ne^2}{m} \sum_j \frac{f_j}{(\omega_j^2 - \omega^2 - i\Gamma_j \omega)}
\]

(9)

Here \(\Gamma_j \) is oscillator width, \(\omega_j \) is oscillator frequency, \(N \) is electron density, and \(f_j \) is the oscillator strength. The plasma frequency, \(\omega_p \), is directly related to the electron density \(N \).

\[
\omega_p = \frac{4\pi Ne^2}{m}
\]

(10)

In the quantum mechanical Lorentz oscillator model, the oscillator strengths are defined to sum to 1, as shown in Eq. 11.

\[
\sum_j f_j = 1
\]

(11)

Note that one can calculate the complex refractive index from the dielectric function of the LO using:

\[
\varepsilon_1 + i\varepsilon_2 = (n + ik)^2
\]

(12)

One can also calculate the absorption coefficient \(\alpha \) using Eq. (3).

For a model optical material, we then construct a LO model using three oscillators to represent low, medium, and high energy interatomic bonds in the material, and we adjust the plasma frequency, the oscillator energies, widths, and strengths, to yield a model that has the same spectral refractive index in the UV and visible region as water in this example. Such a model, reproducing water’s index, is shown in Fig. 5.

4. Results and discussion

We present results on the spectral index of refraction, the absorbance per centimeter, the haze, and the Urbach edge analysis of the materials of interest. The refractive index \((n \) and \(k \)) and transmission intensity of materials of potential interest to CPV were determined over the wavelength range 145–1650 nm.

Through comparison of our optical properties with those reported by Miller [48] of the National Renewable Energy Laboratory (NREL), one can see that each are coming at the optics and optical properties from a different viewpoint. In our case we think of the optical properties of the bulk materials, whereas NREL approaches the problem of the optics from an overall CPV system perspective. Therefore they tend to utilize different metrics such as the use an “absorptance” [49], which is the fraction of light
absorbed by a sample at a specified wavelength

\[T_s = \frac{l - A_s}{l_0 - l} = \frac{l_0 - l}{l_0} \]

(13)

where \(I_0 \) is the intensity of the incident light, \(I \) is the intensity of the light coming out of the sample, and \(T_s \) and \(A_s \) are transmittance and absorptance, respectively. In these equations, scattering and reflection are considered to be close to zero or otherwise accounted for. The transmittance of a sample is sometimes given as a percentage. Thus the absorptance is dimensionless, and it is more from the “optical system point of view”. The absorptance is for transmission of some given thickness of a material, as stated in [48], where \(A_s \) was scaled for 0.5 mm thickness for polymer films to directly compare the optical measurements from different specimens, whereas our optical properties are of materials, which are directly comparable, and are thickness independent.

We report specimen thickness in cm and base e \(x \), cgs (cm gm s units) optical properties, and the absorption coefficient in units of 1/cm. NREL reports \((m \) and \((m^{-1} \) must be superscript to \(m \)) as the unit of specimen thickness and the absorption coefficient as base e \(x \). We found that the results from these two different and complementary approaches are comparable and in agreement. For example, a similar shape of spectra of the ethylene backbone polymers shown in Fig. 5 in [48] is observed comparing Fig. 11. We also see that the ethylene backbone polymers demonstrate some absorbance of UV light and IR from the optical absorbance \(A\) (base 10, 1/cm, Fig. 11) and NREL’s optical absorption curves (% unitless) [48].

The refractive index of quartz is compared with other materials in NREL’s studies [48]. We have previously studied the optical properties of amorphous silica (\(\alpha\)-SiO\(_2\); ultrahigh-purity fused silica) and crystalline silica (\(\alpha\)-quartz) by vacuum ultra-violet spectroscopy and spectroscopic ellipsometry [9]. We found that crystalline SiO\(_2\) has a higher reflectance, index of refraction, and dielectric constant than amorphous SiO\(_2\). The complex index of refraction for both crystalline and amorphous SiO\(_2\) within the wavelength for polymer films to directly compare the optical measurements from different specimens, whereas our optical properties are of materials, which are directly comparable, and are thickness independent.

4.1 Fluoropolymers (FP)

Fluoropolymers are widely used in the photovoltaic industry because of their chemical and environmental resistance, durability, flexibility, electrical isolation, photostability, and moisture resistance [51]. Fluoropolymers are readily available in film form, which is preferred in photovoltaic applications. The weight of a PV module can be reduced by replacing the front glass sheet with a flexible fluoropolymer front sheet. Based on NREL studies, fluoropolymers such as Teflon® FEP have excellent solar radiation durability, having shown little change in optical properties after 27 years of 1 sun solar exposure [52]. Tedlar® PVF films have been an essential component of photovoltaic backsheet for more than 25 years, and are widely recognized as the industry standard due to its excellent strength, weather resistance, ultraviolet resistance, and moisture barrier properties.

4.1.1 Index of refraction

The index of refraction versus wavelength for the fluoropolymers studied is shown in Fig. 6. Their values at the sodium D-line are also summarized in Table 2. The lower indices of refraction correspond to Teflon® PFA and Teflon® FEP, which are about 1.343. Teflon® PVF has a fluorine content of about 59 wt%. Tedlar® PVF has a fluorine content of 41 wt%.

These fluoropolymers exhibit normal dispersion in the visible and UV spectral regions down to wavelengths below 200 nm. Normal dispersion is observed as the wavelength of the light approaches the fundamental absorption edge [44]. Anomalous dispersion arises at wavelengths shorter than the fundamental absorption edge, where the index is seen to decrease with decreasing wavelength. The regions of normal and anomalous dispersion are identified for a Lorentz oscillator model shown in Fig. 5. In addition, the transition from normal to anomalous dispersion is shown in Fig. 6 for Teflon® FEP and PFA, and also in Fig. 13 for the polyimidies.

4.1.2 A/cm and haze

The A/cm and haze of the fluoropolymers are shown in Fig. 7 and 8, respectively. The fundamental absorption edge of Teflon® FEP, Teflon® PFA, and Teflon® ETFE is at wavelengths below 200 nm and therefore the A/cm is very low at all solar wavelengths. Tedlar® PVF TR10AH9 film shows an absorption edge below 300 nm, while Tedlar® ETFE UT20BG3 film essentially blocks most radiation at wavelengths below 400 nm. Its A/cm at longer wavelengths is still very low and comparable to the other fluoropolymers. Even though all the fluoropolymers studied here are semicrystalline materials, only films of Tedlar® PVF UT20BG3 and Teflon® ETFE exhibit significant haze. Teflon® FEP, Teflon®

Table 2

Index of refraction \(n \) at D-line (589.3 nm).

<table>
<thead>
<tr>
<th>FP</th>
<th>Tedlar® PVF TR10AH9</th>
<th>Tedlar® PVF UT20BG3</th>
<th>Teflon® ETFE</th>
<th>Teflon® FEP</th>
<th>Teflon® PFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>n at D-line</td>
<td>EBP</td>
<td>PV1400 EVA</td>
<td>PV5200 PVB</td>
<td>PV5300 Ionomer</td>
<td>1.487</td>
</tr>
<tr>
<td>n at D-line</td>
<td>1.489</td>
<td>1.480</td>
<td></td>
<td>1.899</td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td>Kapton® H</td>
<td>Kapton® HN</td>
<td>Kapton® E</td>
<td>1.824</td>
<td>1.817</td>
</tr>
<tr>
<td>n at D-line</td>
<td>1.824</td>
<td></td>
<td>1.817</td>
<td>1.899</td>
<td></td>
</tr>
</tbody>
</table>
PFA, and Tedlar® PVF TR10AH9 films are very clear and show much less haze than the UV-opaque Tedlar® grade. While haze measurements are relatively independent of wavelength below the fundamental absorption edge, these materials show some degree of bulk haze given long enough optical path lengths.

4.1.3. Urbach edge analysis

In the Urbach analysis of the absorbance (A), as the weight percent of fluorine decreases in the polymers, the Urbach edge position moved to shorter wavelengths, and the Urbach edge width became narrow. Teflon® ETFE shows an optical absorption edge at a wavelength of 314 nm and an Urbach edge width of 37 nm.

The optical absorbance of Teflon® FEP, Teflon® PFA, and Teflon® ETFE for Urbach edge analysis was determined by measuring the transmission of fluoropolymers films using the center mount technique. Tedlar® PVF UT20BG3 shows an optical absorption edge at a wavelength of 454 nm and an Urbach edge width of 17 nm, while Tedlar® PVF TR10AH9 shows an optical absorption edge at a wavelength of 318 nm and an Urbach edge width of 11 nm (Fig. 9). The Urbach fitting range wavelength of the materials of interest is summarized in Table 3.

4.2. Ethylene backbone polymers (EBP)

Ethylene backbone polymers such as the ethylene copolymers with vinyl acetate are widely used as encapsulants in PV. As indicated in NREL studies of ethylene backbone based encapsulants, ethylene-based ionomers showed superior performance after 4000 h of exposure to 42 UV suns [53].

<table>
<thead>
<tr>
<th>Materials</th>
<th>Urbach edge position (nm) from absorbance fits</th>
<th>Urbach edge width (nm) from absorbance fits</th>
<th>Urbach fit range (nm)</th>
<th>Abs offset correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tedlar® PVF UT20BG3</td>
<td>454</td>
<td>17</td>
<td>368–800</td>
<td>No</td>
</tr>
<tr>
<td>Tedlar® PVF TR10AH9</td>
<td>308</td>
<td>9</td>
<td>262–800</td>
<td>No</td>
</tr>
<tr>
<td>Teflon® ETFE PV1400 EVA</td>
<td>314</td>
<td>37</td>
<td>185–800</td>
<td>Yes</td>
</tr>
<tr>
<td>Teflon® FEP PV5200 PVB</td>
<td>266</td>
<td>10</td>
<td>230–258, 295–800</td>
<td>No</td>
</tr>
<tr>
<td>Teflon® PFA PV5300 Ionomer</td>
<td>346</td>
<td>27</td>
<td>250–266, 416–800</td>
<td>No</td>
</tr>
<tr>
<td>Kaption® H</td>
<td>741</td>
<td>47</td>
<td>492–1000</td>
<td>No</td>
</tr>
<tr>
<td>Kaption® HN</td>
<td>731</td>
<td>45</td>
<td>494–1000</td>
<td>No</td>
</tr>
<tr>
<td>Kaption® E</td>
<td>763</td>
<td>56</td>
<td>462–1000</td>
<td>No</td>
</tr>
</tbody>
</table>

Fig. 7. Optical absorbance of fluoropolymer films.

Fig. 8. Haze of fluoropolymer films.

Fig. 9. Optical absorption edge of Teflon® ETFE and Tedlar® PVF films with their corresponding Urbach edge fits.

Table 3

<table>
<thead>
<tr>
<th>Materials</th>
<th>Urbach edge position (nm) from absorbance fits</th>
<th>Urbach edge width (nm) from absorbance fits</th>
<th>Urbach fit range (nm)</th>
<th>Abs offset correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tedlar® PVF UT20BG3</td>
<td>454</td>
<td>17</td>
<td>368–800</td>
<td>No</td>
</tr>
<tr>
<td>Tedlar® PVF TR10AH9</td>
<td>308</td>
<td>9</td>
<td>262–800</td>
<td>No</td>
</tr>
<tr>
<td>Teflon® ETFE PV1400 EVA</td>
<td>314</td>
<td>37</td>
<td>185–800</td>
<td>Yes</td>
</tr>
<tr>
<td>Teflon® FEP PV5200 PVB</td>
<td>266</td>
<td>10</td>
<td>230–258, 295–800</td>
<td>No</td>
</tr>
<tr>
<td>Teflon® PFA PV5300 Ionomer</td>
<td>346</td>
<td>27</td>
<td>250–266, 416–800</td>
<td>No</td>
</tr>
<tr>
<td>Kaption® H</td>
<td>741</td>
<td>47</td>
<td>492–1000</td>
<td>No</td>
</tr>
<tr>
<td>Kaption® HN</td>
<td>731</td>
<td>45</td>
<td>494–1000</td>
<td>No</td>
</tr>
<tr>
<td>Kaption® E</td>
<td>763</td>
<td>56</td>
<td>462–1000</td>
<td>No</td>
</tr>
</tbody>
</table>

Fig. 10. Index of refraction, n, determined from ellipsometric data for ethylene backbone polymers.
4.2.1. Index of refraction

The index of refraction versus wavelength of ethylene backbone polymers is shown in Fig. 10. All of the EBP have a very similar index over the wavelength range measured. PV1400, a copolymer of ethylene and vinyl acetate commonly used in encapsulant formulations for flat plate c-Si PV, shows a slightly higher index than PV5200 and PV5300 polymers. DuPont PV5200, a polyvinylbutyral commonly used in thin-film PV, has the lowest index of refraction.

4.2.2. A/cm and haze

The absorption and haze of the ethylene backbone polymer samples are shown in Figs. 11 and 12. Elvax® PV1400 is an unformulated ethylene-vinyl acetate resin. It does not contain any UV stabilizing additives and therefore shows a shorter wavelength absorption edge than the DuPont™ PV5200 PVB and DuPont™ PV5300 ionomer encapsulants, which are fully formulated products. In addition, Elvax® PV1400 and DuPont™ PV5200 PVB exhibit some haze at these film thicknesses. DuPont™ PV5300 ionomer films are very clear and have the lowest haze of all the encapsulant polymers studied here.

4.2.3. Urbach edge analysis

In the Urbach analysis of the absorbance (A), Elvax® PV1400 shows the shortest optical absorption edge wavelength at 270 nm and the narrowest Urbach edge width at 10 nm. DuPont™ PV5200 PVB shows a slightly longer optical absorption edge at a wavelength of 366 nm and a slightly wider Urbach edge width of 29 nm, while DuPont™ PV5300 ionomer shows an optical absorption edge at a wavelength of 346 nm and an Urbach edge width of 27 nm (Fig. 11).

4.3. Polyimides (PI)

Polyimides are most commonly used behind PV cells for thermal management and other purposes, and are therefore screened from direct sunlight. However, their optical properties are still of interest for potential applications in the PV industry.

4.3.1. Index of refraction

Fig. 13 shows the index of refraction versus wavelength for three different polyimides. As expected of polymers with an aromatic backbone, the index of refraction is much higher than that of the other polymers in this study. Kapton® E shows the highest index refraction of all polyimides.

Here we observe both normal dispersion (index increases with decrease in wavelength) and also anomalous dispersion [44] where, for wavelengths of light that are shorter than the fundamental absorption edge of the material, the index is seen to decrease with decrease in wavelength.

Fig. 13. Index of refraction, n, determined from ellipsometric data for polyimides.
4.3.2. A/cm and haze

The A/cm and haze of the polyimide polymers are shown in Figs. 14 and 15. The fundamental absorption edge of Kapton®, H, Kapton® HN, and Kapton® E are at similar wavelengths, and can be associated with the visual yellow color of these materials. The higher haze in the Kapton® HN can be associated with additives. Polyimides start absorbing at ~550 or 600 nm and absorb highly below 500 nm. The haze goes to 100% below 500 nm, but the transmission goes to zero. The meaning of 100% haze in an opaque material is not sensible, when there is no transmission. The ASTM method says haze is only defined in spectral regions where the material is transparent. In the UV we say that haze values at wavelengths shorter than the onset of the UV absorption edge are not meaningful (the increase in haze as absorption increases, is not representative of a change in the source of the haze, it is an artifact of the drop in transmission), so we truncate the haze at the onset of the absorption edge. We also tend to think of the haze as a spectral property versus wavelength, and only give that average haze from 380 to 780 nm in a table, and if a material has its average haze number taken over a different range, we report the narrower range. The same arguments would apply in the infrared.

4.3.3. Urbach edge analysis

In the Urbach analysis of the absorbance (A), Kapton® E shows a longer optical absorption edge (763 nm) and a wider Urbach edge width (56 nm) than other two polyimides. Kapton® H shows an optical absorption edge at a wavelength of 741 nm and an Urbach edge width of 47 nm, while Kapton® HN shows an optical absorption edge at a wavelength of 731 nm and an Urbach edge width of 45 nm (Fig. 14).

5. Conclusions

Three groups of polymers encompassing ten materials have been studied using ellipsometry and transmission measurements to determine their optical properties. These materials have differing compositions and additives, which give rise to systematic changes in the optical properties such as the index of refraction and optical absorbance. The unique optical properties of these materials make them suitable for various applications in the photovoltaic industry.

Acknowledgments

The authors would like to gratefully acknowledge Greg Pribil (J.A. Woollam Co.) for his useful input in the ellipsometric analysis, Ray E. Richardson for the optical absorbance and haze measurements, and Myles Murray and Wei-Chun Lin for assistance with the manuscript.

References

[43] Varian Cary Division, Palo Alto CA, 94303.

