ULTRAVIOLET AND VACUUM ULTRAVIOLET TRANSPARENT POLYMER COMPOSITIONS AND THEIR USES

Inventors: Robert Clayton Wheland, Wilmington, DE (US); Roger Harquail French, Wilmington, DE (US); Fredrick Claus Zumsteg, Jr., Wilmington, DE (US)

Assignee: E. I. du Pont de Nemours and Company, Wilmington, DE (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 185 days.

Appl. No.: 10/130,445
PCT Filed: Nov. 16, 2000
PCT No.: PCT/US00/31599
§ 371 (e)(1), (2), (4) Date: May 15, 2002
PCT Pub. No.: WO01/37044
PCT Pub. Date: May 25, 2001

Related U.S. Application Data
Provisional application No. 60/166,037, filed on Nov. 17, 1999.

Int. Cl. G03F 9/00

U.S. Cl. 430/5; 526/253; 359/350
Field of Search 526/253; 359/350; 430/5

References Cited
U.S. PATENT DOCUMENTS
5,904,876 A 5/1999 Ichinose et al.
6,335,408 B1 * 1/2002 Russo et al. 526/253

FOREIGN PATENT DOCUMENTS
JP 5904566 3/1984
JP 01241557 9/1989
JP 07295207 11/1995

* cited by examiner

Primary Examiner—David W. Wu
Assistant Examiner—Henry S. Hu

ABSTRACT
Disclosed are partially fluorinated and fully fluorinated polymers that are substantially transparent to ultraviolet radiation at wavelengths from 140 to 186 nanometers.

44 Claims, 19 Drawing Sheets
FIGURE 1
FIGURE 19
ULTRAVIOLET AND VACUUM ULTRAVIOLET TRANSPARENT POLYMER COMPOSITIONS AND THEIR USES

This application claims the benefit of Provisional application Ser. No. 60/166,037, filed Nov. 17, 1999.

FIELD OF THE INVENTION

This invention concerns partially fluorinated and fully fluorinated polymers that are substantially transparent to ultraviolet radiation at wavelengths from approximately 140 nanometer to 180 nanometers.

TECHNICAL BACKGROUND OF THE INVENTION

The semiconductor industry is the foundation of the trillion dollar electronics industry. The semiconductor industry continues to meet the demands of Moore's law, whereby integrated circuit density doubles every 18 months, in large part because of continuous improvement of optical lithography's ability to print smaller features on silicon. The circuit pattern is contained in the photomask, and an optical stepper is used to project this mask pattern into the photoresist layer on the silicon wafer. Current lithography is done using 248 nm light; lithography with 193 nm light is just entering early production. Alternate methods of lithography that do not use visible or ultraviolet light waves, i.e., the next generation lithographies utilizing X-rays, e-beams or EUV radiation have not matured sufficiently that they are ready to be adopted for production. The industry, through its international consortium SEMATECH, has concluded that 157 nm light based lithography will be the next technological step. 157 nm lies in the region of the spectrum referred to as the vacuum uv (VUV), which range extends from 186 nm down to below 50 nm. Use of this VUV lithography requires materials transparent in this range. Specifically, the new 157 nm optical lithography standard leads to a demand for new polymeric materials, based on the requirement for transparency at 157 nm. As use of this new technology develops, there remains a continuing need for improved materials useful at the shorter wavelengths.

Certain fluoropolymers have already been identified in the art as useful for optical applications such as light guides, anti-reflective coatings and layers, pellicles, and glues. Most of this work has been done at wavelengths above 200 nm where perfluoropolymer absorption is of little concern.

WO 9836524, Aug. 20, 1998, Mitsui Chemical Inc., discloses the use of resins consisting solely of C and F, optionally in combination with silicone polymers having siloxane backbones, as pellicle membranes having an absorbance/micrometer of 0.1 to 1.0 at UV wavelengths from 140 to 200 nm. Data in the literature, together with applicant’s measurements, for fluoropolymers (see Table I below) demonstrate that, at least at 157 nm, C and F fluoropolymers have absorbances much larger than A/µm=0.1 to 1 as claimed by WO 9836524.

WO 9822851, May 28, 1998, Mitsui Chemicals, Inc., claims the use of photodegradation-resistant, tacky polymers that immobilize dust particles when coated on the inside of a pellicle frame. These tacky materials have compositions consisting largely of low molecular weight —(CF2—CXR) copolymers in which X is halogen and R is —Cl or —CF3. Higher molecular weight polymers such as poly(perfluorobutyl vinyl ether), poly(tetrafluoroethylene/(4, 5-difluoro-2,2-bis(trifluoromethyl)-1,3-dioxole)], poly(tetrafluoroethylene/hexafluoropropylene/vinylidene fluoride), poly(hexafluoropropylene/vinylidene fluoride), or poly(chlorotrifluoroethylene/vinylidene fluoride) are added as a minor component to improve creep resistance. It should be noted that all exemplifications of this technology were with poly(chlorotrifuoroethylene) as the low molecular weight adhesive agent, that poly(chlorotrifuoroethylene) absorbs 157 nm light strongly, and that retention of tackiness after extended UV degradation (illustrated only at 248 nm), not transparency, was the only demonstrated advantage of the claimed formulations.

Japanese Patent 07295207, Nov. 10, 1995, Shinetsu Chem. Ind Co., claims double layer pellicles combining Cytop™ CTX5 (poly(CF2—CFOCF2—CF3) with Telolon® AF 1600 for greater strength. Both Telolon® AF 1600 and Cytop™ absorb strongly at 157 nm (see Table 2).

U.S. Pat. No. 5,286,567, Feb. 15, 1994, Shin-Etsu Chemical Co., Ltd., claims the use of copolymers of tetrafluoroethylene and five membered cyclic perfluoroether monomers as pellicles once they have been made hydrophilic, and therefore antistatic, by plasma treatment. That the presence of five membered ring monomers and tetrafluoroethylene is not sufficient criteria to yield A/µm=0.1, is illustrated in Table 2 where only one out of five such polymers meet this goal.

Japanese Patent 5904876, Mar. 21, 1984, Mitsubishi Toatsu Chemicals, Inc., claims the use of a stretched film of poly(vinylidene fluoride) as having good transparency from 200 to 400 nm.

Many of the fluoropolymers cited in the references above are noticeably hazy to the eye because of crystallinity and would therefore be expected to scatter light to a degree unsuitable for high light transmission and the accurate reproduction of circuit patterns. Poly(vinylidene fluoride), poly(chlorotrifluoroethylene), poly(tetrafluoroethylene/ethylene), commercially available poly(tetrafluoroethylene/hexafluoropropylene) compositions, and poly(ethylene/chlorotrifluoroethylene) are all such crystalline, optically hazy materials. More recent references have thus been directed at Cytop™ and Telolon® AF because they combine perfluorination with outstanding optical clarity, solubility, and a complete lack of crystallinity. As shown below in the Discussion, however, Cytop™ and most grades of Telolon® AF do not have the required transparency at 157 nm.

It is an object of the present invention to overcome the difficulties associated with the prior art by providing partially fluorinated and fully fluorinated polymers that are substantially transparent to ultraviolet radiation at wavelengths between 140 and 180 nanometers, especially at 157 nm.

SUMMARY OF THE INVENTION

This invention provides a process or method comprising causing electromagnetic radiation in the wavelength range of 140 to 186 nanometers to be emitted from a source thereof, disposing in the path of at least a portion of the so emitted radiation a receptor responsive to electromagnetic
radiation in the wavelength range of 140 to 186 nanometers so that a pattern in space or time is thereupon imposed;

disposing between said source and said receptor at least
one optical element having an absorbance/liquidometer of <1 said optical element comprising
an amorphous polymer selected from the group consisting of a copolymer of CH$_2$=CHCF$_3$ and CF$_2$=CF$_3$, a copolymer of CH$_2$=CFH and CF$_2$=CFCl, a copolymer of CH$_2$=CHF and CCCHI=CF$_3$, wherein said copolymers the ratio of monomers ranges from approximately 1:2 to approximately 2:1; a copolymer comprising two or more different monomer units represented by the formula CX$_2$=CH$_2$ where X is F or CF$_3$; a copolymer of ±60 mole % 4,5-difluoro-2,2-bis (trifluoromethyl)-1,3-dioxole and one or more mono-
mer; represented by the formula CX$_2$=CH$_2$ where X is F or CF$_3$; a copolymer of perfluoro(2-methylene-4-
5 methyl-1,3-dioxolane) and 4,5-difluoro-2,2-bis (trifluoromethyl)-1,3-dioxole; a copolymer of perfluoro
2-(methylene-4-methyl-1,3-dioxolane) and vinylidene fluoride; perfluoro(2-methylene-4-methyl-1,3-
dioxolane);
and,
extracting information from the pattern so imposed.

This invention also provides an optical system comprising a source of electromagnetic radiation in the wavelength region of 140 to 186 nanometers,
a receptor disposed within the optical path of at least a portion of the radiation which may be emitted from said source said receptor having a sensitivity to radiation in the wavelength region of 140 to 186 nanometers,
at least one optical element disposed between said source and said receptor, said element having an absorbance per micrometer of <1.0 in the wavelength region of 140 to 186 nanometers,
wherein said optical element comprises an amorphous polymer selected from the group consisting of a copolymer of CH$_2$=CHCF$_3$ and CF$_2$=CF$_3$, a copolymer of CH$_2$=CHF and CCCHI=CF$_3$, wherein said copolymers the ratio of monomers ranges from approximately 1:2 to approximately 2:1; a copolymer comprising two or more different monomer units represented by the formula CX$_2$=CH$_2$ where X is F or CF$_3$; a copolymer of ±60 mole % perfluoro-2,2-dimethyl-1,3-dioxole and one or more monomers represented by the formula CX$_2$=CH$_2$ where X is F or CF$_3$; a copolymer of perfluoro(2-methylene-4-methyl-1,3-dioxolane) and perfluoro(2,2-dimethyl-1,3-dioxole); a copolymer of perfluoro(2-methylene-4-methyl-1,3-dioxolane) and vinylidene fluoride; poly(perfluoro(2-
2-methylene)ethyl)-1,3-dioxolane),
and,
a means for creating a pattern of the electromagnetic radiation emitted from said source when said radiation is incident upon said receptor.

This invention further provides pellicles, anti-reflective coatings, optically clear glues, light guides and resists comprising the UV transparent material provided above.

This invention further provides copolymer compositions comprising poly(hexafluorosulfonyl:trioxyethylene) with 40–60 mole % hexafluorosobutylenic and 60–40 mole % trifluoroethylene.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 describes the 157 nm transmission T of a pellicle in units of % as a function of the 157 nm absorbance, in units of inverse microns, of the polymer for an absorbance range from 0.4 to 0.0. The effects of thin film interference in the pellicle membrane are neglected in this calculation.

FIG. 2 describes the absorbance in units of inverse microns for Telon® AF 1601 (Sample 7a) and Cytop™ (Sample 13) versus wavelength lambda (λ) in units of nanometers.

FIG. 3 describes the index of refraction n and the extinction coefficient k determined for a Telon® AF 1601 film (Sample 7b) of thickness 2146 angstroms on a silicon substrate versus wavelength lambda in units of nanometers determined by VUV spectroscopic ellipsometry.

FIG. 4 describes the spectral transmission in absolute units versus the wavelength lambda in units of nanometers for a pellicle of Telon® AF 1601 designed as an unsup-
tored tuned etalon with a film thickness of 6095 angstroms. The interference fringes of the tuned etalon are clearly visible as a function of wavelength.

FIG. 5 describes the spectral reflectance in absolute units versus the wavelength lambda in units of nanometers for a pellicle of Telon® AF 1601 designed as an unsup-
tored tuned etalon with a film thickness of 6095 angstroms. The interference fringes of the tuned etalon are clearly visible as a function of wavelength, and a minimum in the pellicle reflectance is seen at 157 nm which contributes to the maximized pellicle transmission at this lithographic wavelength.

FIG. 6 describes transmission of a tuned etalon pellicle film of Telon® AF 1601 at a lithographic wavelength of 157 nm as a function of the pellicle film thickness. The oscillations in the pellicle transmission with thickness arise due to the thin film interference fringes in the film and give rise to pellicle transmission maxima and minima. The optimum tuned etalon pellicle design will correspond to the film with sufficient mechanical integrity and a thickness such that the transmission is at a maxima. Still as can be seen, pellicles designed from this material have substantially lower trans-
missions than the target transmission for a 157 nm pellicle.

FIG. 7 describes the absorbance in units of inverse microns for Telon® AF 1200 (Sample 8), Telon® AF 1601 (Sample 7a), and Telon® AF 2400 (Sample 5) versus wavelength lambda (λ) in units of nanometers. Notice the dramatic decrease in the absorbance/micron as the PDD content of the polymer increases and the TFE content of the polymer decreases from 52% to 32% to 11%, and therefore the lengths of any (CF$_2$)$_n$ runs in the polymer decreases.

FIG. 8 describes the absorbance in units of inverse microns for TFE:HFP (Sample 14) and TrFE:HFP (Sample 12) versus wavelength lambda (λ) in units of nanometers. The presence of the HF carbons in the CF$_2$=CFH monomer interrupts extended CF$_2$ runs. This effect can also be understood as the absorption maxima of TFE:HFP polymer shifts to shorter wavelengths in the TrFE:HFP polymer.

FIG. 9 describes the absorbance in units of inverse microns for VF$_2$:PDD (Sample 2), VF$_2$:HFP (Sample 1), HFB:TrFE (Sample 3) and HFB:VF (Sample 4) versus wavelength lambda (λ) in units of nanometers.

FIG. 10 describes the index of refraction n and the extinction coefficient k determined for a HFB:VF film (Sample 4a) of thickness 14,386 angstroms on a silicon substrate versus wavelength lambda in units of nanometers determined by VUV spectroscopic ellipsometry.

FIG. 11 describes the spectral transmission in absolute units versus the wavelength lambda in units of nanometers for a pellicle of HFB:VF designed as an unsupported tuned
etalon with a film thickness of 3600 angstroms. The interference fringes of the tuned etalon are clearly visible as a function of wavelength.

FIG. 12 describes the spectral reflectance in absolute units versus the wavelength lambda in units of nanometers for a pellicle of HFIB:VF designed as an unsupported tuned etalon with a film thickness of 3600 angstroms. The interference fringes of the tuned etalon are clearly visible as a function of wavelength, and a minimum in the pellicle reflectance is seen at 157 nm which contributes to the maximized pellicle transmission at this lithographic wavelength.

FIG. 13 describes transmission of a tuned etalon pellicle film of HFIB:VF with an absorbance per micron of 0.022 and an index of refraction of 1.5 at a lithographic wavelength of 157 nm as a function of the pellicle film thickness. Note that for pellicle film thicknesses up to 3600 angstroms, the maximum pellicle transmission is above the target specification of 98%.

FIG. 14 describes transmission of a tuned etalon pellicle film of a polymer with an absorbance per micron of 0.01 and an index of refraction of 1.5 at a lithographic wavelength of 157 nm as a function of the pellicle film thickness. Note that for pellicle film thicknesses up to 8371 angstroms, the maximum pellicle transmission is above the target specification of 98%.

FIG. 15 describes the absorbance in units of inverse microns for 5:6 TFP:TFE (Sample 17), HFIB:VF (Sample 18), 5:2 VF2:PFMVE (Sample 19), 7:5 VF2:PPV (Sample 21) and 79:21 VF2:HFP (Sample 22) versus wavelength lambda (\(\lambda\)) in units of nanometers.

FIG. 16 describes the absorbance in units of inverse microns for 1:1 PDD:TFE (Sample 9), 13:10 VF2:PFMVE (Sample 20), 2:5:2 HFP:PFMVE:VF2 (Sample 23), 10:7 HFIB:VF (Sample 24) and 6:5 PDD:PFMVE (Sample 25) versus wavelength lambda (\(\lambda\)) in units of nanometers.

FIG. 17 describes the absorbance in units of inverse microns for 20:11 VF:CIDEFE (Sample 26), 1:2 PDD:VF2 (Sample 27), 1:1 HFIB:VA (Sample 32), PDM (Sample 33) and PDM:PF1 (Solution 34) versus wavelength lambda (\(\lambda\)) in units of nanometers.

FIG. 18 describes the absorbance in units of inverse microns for 1:1 CIDEFE:VF (Sample 6b), 5:2 VF2:TFE (Sample 10), 10:23 PDD: CIDEFE (Sample 11), 5:4 VF2:CIDEFE (Sample 15) and 1:1 PDD:TFE (Sample 18) versus wavelength lambda (\(\lambda\)) in units of nanometers.

FIG. 19 describes the absorbance in units of inverse microns for 5:8 PDD:VF2 (Sample 29) and 41:37:22 HFIB:VF:VF2 (Sample 19) versus wavelength lambda (\(\lambda\)) in units of nanometers.

DETAILED DESCRIPTION OF THE INVENTION

The invention provides fluoropolymer compositions and their use in certain electronic applications.

Certain abbreviations used throughout the specification are tabulated:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFE</td>
<td>tetrafluoroethylene</td>
</tr>
<tr>
<td>HFP</td>
<td>hexafluoropropylene</td>
</tr>
<tr>
<td>VF</td>
<td>vinyl fluoride</td>
</tr>
<tr>
<td>CIDEFE</td>
<td>chlorotrifluoroethylene</td>
</tr>
</tbody>
</table>

Use of 157 nm light in the next generation of lithography raises new photochemical issues not encountered in lithography at longer wavelengths. The energy of a 157 nm photon (182 kcal/mole or 7.9 eV of light quanta) is great enough to break common chemical bonds as, for example, C—F (108–116 kcal/mole), C—H (98–105 kcal/mole), C—C (88–97 kcal/mole) and C—Cl (82–86 kcal/mole) bonds. Absorption maxima for selected hydrocarbon and fluorocarbon compounds are shown in Table 1.

TABLE 1

Comparison of UV Absorption Maxima for Hydrocarbons and Fluorocarbons

<table>
<thead>
<tr>
<th>WAVELENGTH OF ABSORPTION MAXIMUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(2)H({15})Cl (\lambda_{\text{max}})</td>
</tr>
<tr>
<td>a = 1</td>
</tr>
<tr>
<td>a = 2</td>
</tr>
<tr>
<td>a = 3</td>
</tr>
<tr>
<td>a = 4</td>
</tr>
<tr>
<td>a = 5</td>
</tr>
<tr>
<td>a = 6</td>
</tr>
<tr>
<td>a = 7</td>
</tr>
<tr>
<td>a = 8</td>
</tr>
<tr>
<td>a = 172</td>
</tr>
</tbody>
</table>

AP can be seen from the table, UV absorption maxima move to longer wavelengths as chain length increases for both hydrocarbons and fluorocarbons. Fluorocarbon chains (CF\(_2\)) absorb at 157 nm somewhere between n=6 (142 nm) and n=172 (161 nm) while hydrocarbon chains (CH\(_2\)) absorb at 157 nm as early as n=2. Clearly then fluorocarbon chains are more resistant than hydrocarbon chains to UV absorption and not surprisingly the industry has been moving increasingly towards fluorination when seeking high UV transmission. But, as long as chain lengths still offer acceptable transparency can never exceed (CH\(_2\)) or (CF\(_2\)) 6, perfectly transparent polymers at 157 nm would seem precluded. Consistent with this, V. N. Vaseilets, et al. J. Polym. Sci., Part A, Polym. Chem., 36, 2215(1998) for example report that poly(tetrafluoroethylene-hexafluoropropylene), [poly
absorbance, in units of inverse microns, of the polymer for
an absorbance range from 0.4 to 0.0 is shown. The effects of
thin film interference in the pellicle membrane are neglected
in this calculation. The results for pellicle films of thick-
nesses ranging from 0.2 microns to 1 micron are shown, and
demonstrate that for any particular polymer, the pellicle
transmission can be increased, through the use of a thinner
pellicle film thickness. This approach to increasing the
pellicle transmission has a limited range of utility, since the
pellicle film is an unsupported polymer membrane and must
have sufficient mechanical strength and integrity. These
mechanical requirements suggest the use of polymer with
relatively high glass transition temperature T_g and polymer
film thicknesses of 0.6 microns or greater. From FIG. 1 it can
be seen that a target absorbance per micron of a polymer for
pellicle applications is <0.02 abs./micron at 157 nm.

In FIG. 2 the absorbance in units of inverse microns for
Teflon® AF 1601 and Cytop™ versus wavelength lambda (λ)
in units of nanometers is shown. At 157 nanometers, the
absorbance/micron for Cytop has a value of 1.9/micron while
Teflon® AF 1601 has an absorbance of 0.42/micron, approxi-
mately 5 times lower than Cytop. In Example 1 we will
demonstrate that even the 157 nm absorbance of Teflon® AF 1601 of 0.42/micron is too high for application
as a pellicle for use at 157 nm.

The optical properties (index of refraction, “n” and extinction
coefficient, “k”) are determined from variable angle
spectroscopic ellipsometry (VASE) at three incident angles
covering the wavelength range from 186–800 nm, cor-
sponding to an energy range of 1.5–6.05 eV, in combination
with VUV ellipsometry (VUV-VASE) measurements per-
formed at a single angle of incidence from 143–275 nm,
corresponding to an energy range of 4.5–8.67 eV. The
polymer films were spin coated onto a silicon substrate. The
VASE ellipsometers were manufactured by J. A. Woollam
Company, 645 M Street, Suite 102, Lincoln, Nebr. 68508
USA. Optical constants were fit to these data simultaneously,
using an optical model of the film on the substrate. See
generally, O. S. Heavens, Optical Properties of Thin Solid
reference.

From knowledge of the spectral dependence of optical
properties, the transmission of a pellicle film of arbitrary
thickness can be calculated by using an optical model for the
unsupported pellicle film, at a specific polymer film
thickness, and then calculating the pellicle film transmis-
sion and reflectance. In this manner the pellicle film thickness
can be optimized such that the pellicle will exhibit a thin film
interference maximum in the transmission spectrum at the
desired lithographic wavelength. These transmission
maxima occur for various film thicknesses, determined from
the index of refraction of the polymer, the lithographic
wavelength of interest and the film thickness. The transmis-
sion maxima of a properly tuned etalon pellicle film occur
where the reflectance of the pellicle film exhibits minimum
in the reflectance, and correspond to minimizing the pellicle’s
reflectance and maximizing its transmission at the
lithographic wavelength. The relationship between the
extinction coefficient k and the absorption coefficient a and
the absorbance per micron A is given in Equation 2, where
lambda is the wavelength of light. This relationship is useful
in comparing results of absorbance measurements and ellip-
sometry measurements. This relationship for A is exact if
light scattering in the polymer film (as may occur due to
crystallinity of the polymer), thin film interference effects,
and surface scattering effects are minimized.

In this manner the Absorbance A has units of inverse
microns (or 1/micron, where a micron, is a micrometer or
um of polymer film thickness. The absorbance/micron of
polymer films discussed here were measured for polymer
films spun coated on to CaF$_2$ substrates using standard
methods. The VUV transmission of each CaF$_2$ substrate
was measured prior to the spin coating of the polymer film.
Then the VUV transmission of the polymer film on that particular
CaF$_2$ substrate was measured, and using the measured film
thickness (reported in Table 2 and equation 1), the values of
the absorbance/micron for the polymers, as a function of
wavelength was determined, and the value of the
absorbance/micron for a wavelength of 157 nm is tabulated
in Table 2. For some materials, two films, of differing
thicknesses are presented in the Table 2, and Absorbance/
micron values for each film are also presented.

The VUV transmission of the CaF$_2$ substrates and the
polymer films on the CaF$_2$ substrates were measured using
a VUV spectrophotometer using a laser plasma light source,
a sample chamber capable of both transmission and reflect-
ce measurements, a 1 meter monochromator and a
sodium salicylate phosphor coated 1024 element photodiode
detector. This is discussed in greater detail in R. H. French,
“Laser-Plasma Sourced, Temperature Dependent VUV
Spectrophotometer Using Dispersive Analysis”, Physica
Scripta, 41, 4, 404-8, (1990) which is incorporated herein by
reference.

The absorbance per micron of a polymer will determine
the average transmission of an unsupported pellicle film
made from that polymer. In FIG. 1, the 157 nm transmission
T of a pellicle in units of % as a function of the 157 nm

$A_{abs} (\mu m^{-1}) = A/m = \frac{\log(10^{0.44} / T_{transmission} / T_{reflectance})}{\lambda}$

Equation 1
Polymeric materials with very low absorbance/micron or extinction coefficients and low values of the index of refraction also have very important applications as anti-reflection coatings and optical adhesives. A low absorbance material, as taught here in can be used to reduce the light reflected from the surface of a transparent substrate of a relatively higher index of refraction. This decrease in the reflected light, leads to a concomitant increase in the light transmitted through the transparent substrate material. This anti reflective coating effect of these low absorbance/micron materials can be seen in the results for

\[\kappa = \frac{\alpha}{4\varepsilon} = 2.3 \frac{\lambda}{4\varepsilon} \]

Equation 2

WO 9836324 discloses carbon/fluorine polymers such as poly(tetrafluoroethylene/hexafluoropropylene) as pellicle membranes having absorption \(A/\mu \) of 0.1 to 1 for use at 140 to 200 nm. The data in Table 1 above, derived from literature sources, Vasilets' report of high absorption and photodegradation of poly(hexafluoropropylene/tetrafluoroethylene) at 148 nm [V. N. Vasilets, et al, J. Poly. Sci., Part A. Poly. Chem., 36, 2215 (1998), and the data in Table 2 which combines additional literature data with applicant's data, casts doubt on this disclosure. For example, poly(tetrafluoroethylene/hexafluoropropylene), polymer #14 of Table 2, shows a relatively strong \(A/\mu \) of 3.9 at 157 nm that fails not only the industry goals for pellicles (\(A/\mu \leq 0.1 \)) but also the much looser goals for resists (\(A/\mu < 2 \)). Japanese Patent 07295276 claims bilayer membranes of Cytop™ and Teflon® AF 1600 as pellicle films. At 157 nm Cytop™ has a \(A/\mu \) of 1.9 (polymer #13, Table 2) and Teflon® AF 1600 an \(A/\mu \) of 0.4 (polymer #7, Table 2). This is not surprising considering the data of Table 1 that shows significant UV light absorption at 160 nm whenever there are more than about 6 CF₃ groups connected in a chain. Indeed, W. H. Buck and P. R. Resnick report that Teflon™ AF 1600 has more than 30% of its CF₃ units present as (CF₃)n runs with n=6 consistent with its \(A/\mu = 0.4 \) [J. Scheirs, Modem Fluoropolymers, John Wiley, New York, 1997, Chapter 22, page 401]. Unless the interactions responsible for such absorption can be broken up, it would seem impossible to find a carbon based polymer completely transparent at wavelengths shorter than about 160 nm.

Table 2 below lists absorbance/micrometer (\(A/\mu \)) at 157 nm for partially and fully fluorinated polymer films that have been spin coated on CaF₂ crystals. Polymers are listed in order of increasing absorption. In some cases, more than one sample of various polymers have been prepared within an Example. Therefore, Table entries are identified by both Example number (first column) and sample number. In addition, reference to Figures displaying spectra of various polymers are cross referenced in the Table.

Table 2

<table>
<thead>
<tr>
<th>Ex. #</th>
<th>Sample #</th>
<th>Structure Name</th>
<th>A/\mu 157 nm</th>
<th>A/\mu 193 nm</th>
<th>A/\mu 248 nm</th>
<th>Tg (°C)</th>
<th>Tm (°C)</th>
<th>Thick (Å)</th>
<th>Spin Speed (Rpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIG. 9</td>
<td>1a</td>
<td>79:21</td>
<td>0.015</td>
<td>0.008</td>
<td>0.003</td>
<td>22°</td>
<td>69,800</td>
<td>3 k</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1b</td>
<td>CF₃−CH₂−CF₂−CFCF₃</td>
<td>(0.5)</td>
<td>(0.15)</td>
<td>(0.1)</td>
<td>1641</td>
<td>6 k</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIG. 9</td>
<td>2</td>
<td>1:1</td>
<td>-0.04</td>
<td>0.02</td>
<td>0.08</td>
<td>ND</td>
<td>2097</td>
<td>6 k</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>CF₃−CH₂−PDD₂</td>
<td>-0.04</td>
<td>0.02</td>
<td>0.08</td>
<td>ND</td>
<td>2097</td>
<td>6 k</td>
<td></td>
</tr>
<tr>
<td>FIG. 9</td>
<td>3a</td>
<td>3:2</td>
<td>0.012</td>
<td>0.005</td>
<td>-0.001</td>
<td>93° C</td>
<td>12,146</td>
<td>3 k</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2-continued

<table>
<thead>
<tr>
<th>Figure, Ex.</th>
<th>Sample #</th>
<th>Structure Name</th>
<th>A at 157 nm</th>
<th>A at 193 nm</th>
<th>A at 248 nm</th>
<th>Tg</th>
<th>Tm</th>
<th>Thick Angstroms</th>
<th>Spin Speed Rpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex. 2</td>
<td>3b</td>
<td>3:2 HIFB/TiFE</td>
<td>(-0.05)</td>
<td>(0.03)</td>
<td>(0.01)</td>
<td>56° C.</td>
<td></td>
<td>(1500)</td>
<td>6 k</td>
</tr>
<tr>
<td>FIG. 9</td>
<td>4a</td>
<td>2:2</td>
<td>0.027</td>
<td>0.020</td>
<td>0.008</td>
<td></td>
<td></td>
<td>14386</td>
<td>3 k</td>
</tr>
<tr>
<td>FIG. 10</td>
<td>4b</td>
<td>(CF2)3C=CH2-CHF=CFH</td>
<td>(-0.04)</td>
<td>(0.009)</td>
<td>(0.03)</td>
<td></td>
<td></td>
<td>(2870)</td>
<td>6 k</td>
</tr>
<tr>
<td>Ex. 3</td>
<td>4c</td>
<td>3:2 HIFB/VF</td>
<td>0.022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIG. 7</td>
<td>5</td>
<td>89:11F</td>
<td>0.007</td>
<td>-0.06</td>
<td>-0.06</td>
<td>240° C.</td>
<td></td>
<td>2133</td>
<td>6 k</td>
</tr>
<tr>
<td>Ex. 1</td>
<td></td>
<td>PDD:CF2-==CF2</td>
<td>TAF2600</td>
<td>PDD:TiFE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIG. 18</td>
<td>6a</td>
<td>1:1</td>
<td>0.129</td>
<td>-0.073</td>
<td>-0.037</td>
<td></td>
<td></td>
<td>1850</td>
<td></td>
</tr>
<tr>
<td>Ex. 21</td>
<td>6b</td>
<td>CF3=CFCl-CH2=CHF</td>
<td>(0.388)</td>
<td>(0.016)</td>
<td>(0.006)</td>
<td></td>
<td></td>
<td>(17644)</td>
<td></td>
</tr>
<tr>
<td>FIG. 2,7</td>
<td>7a</td>
<td>1:1 CTH:VF</td>
<td>68:32F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex. A1</td>
<td>7b</td>
<td>PDD:CF2-==CF2</td>
<td>TAF1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIG. 7</td>
<td>8</td>
<td>8:52F</td>
<td>0.42</td>
<td>0.02</td>
<td>0.01</td>
<td>160° C.</td>
<td></td>
<td>3323</td>
<td>6 k</td>
</tr>
<tr>
<td>Ex. 1</td>
<td></td>
<td>PDD:CF2-==CF2</td>
<td>TAF2600</td>
<td>PDD:TiFE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIG. 16</td>
<td>9</td>
<td>1:1</td>
<td>0.03</td>
<td>-0.004</td>
<td>-0.001</td>
<td>150° C.</td>
<td></td>
<td>7688</td>
<td></td>
</tr>
<tr>
<td>Ex. 20</td>
<td></td>
<td>PDD:CF2-==CFH</td>
<td>1:1 PDD:TiFE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIG. 18</td>
<td>10</td>
<td>8:2</td>
<td>0.924</td>
<td>0.888</td>
<td>0.83</td>
<td></td>
<td></td>
<td>ND°</td>
<td></td>
</tr>
<tr>
<td>FIG. 18</td>
<td>11</td>
<td>5:2</td>
<td>10:23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>98° C.</td>
<td>6 k</td>
</tr>
<tr>
<td>FIG. 8</td>
<td>12</td>
<td>2:98</td>
<td>1.37</td>
<td>0.143</td>
<td>-0.02</td>
<td>179° C.</td>
<td></td>
<td>3323</td>
<td>6 k</td>
</tr>
<tr>
<td>Ex. A</td>
<td></td>
<td>Poly(CF2=CF=CF2-CF2=CF2)</td>
<td>5:8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIG. 18</td>
<td>15</td>
<td>5:4</td>
<td>5:4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5:4</td>
<td></td>
</tr>
<tr>
<td>FIG. 18</td>
<td>16</td>
<td>-2:1 PMD3-2:1 PMD3</td>
<td>1.17</td>
<td>-0.015</td>
<td>0.07</td>
<td>64° C.</td>
<td></td>
<td>2207</td>
<td>6 k</td>
</tr>
<tr>
<td>FIG. 15</td>
<td>17</td>
<td>8:2</td>
<td>0.149</td>
<td>0.008</td>
<td>-0.00085</td>
<td>9° C.</td>
<td></td>
<td>41413</td>
<td>1.5 k</td>
</tr>
<tr>
<td>FIG. 18</td>
<td>18</td>
<td>45:55</td>
<td>0.005</td>
<td>-0.00082</td>
<td>-0.002</td>
<td>18° C.</td>
<td></td>
<td>9239</td>
<td>1.5 k</td>
</tr>
<tr>
<td>FIG. 15</td>
<td>19</td>
<td>5:2</td>
<td>0.016</td>
<td>0.006</td>
<td>0.004</td>
<td>-32° C.</td>
<td></td>
<td>72750</td>
<td></td>
</tr>
<tr>
<td>Ex. 9</td>
<td></td>
<td>CH2=CF2-OCF2-OCF2-CH2=CF2</td>
<td>5:2</td>
<td>0.034</td>
<td>0.015</td>
<td>-29° C.</td>
<td></td>
<td>25970</td>
<td></td>
</tr>
<tr>
<td>FIG. 16</td>
<td>20</td>
<td>13:10</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIG. 15</td>
<td>21</td>
<td>7:5</td>
<td>0.028</td>
<td>-0.003</td>
<td>-0.00074</td>
<td>-32° C.</td>
<td></td>
<td>29874</td>
<td></td>
</tr>
<tr>
<td>FIG. 15</td>
<td>22</td>
<td>7:2</td>
<td>0.014</td>
<td>-0.002</td>
<td>-0.00056</td>
<td>-22° C.</td>
<td></td>
<td>13000</td>
<td></td>
</tr>
<tr>
<td>FIG. 16</td>
<td>23</td>
<td>10:27:63</td>
<td>0.008</td>
<td>-0.00048</td>
<td>-0.00045</td>
<td></td>
<td></td>
<td>ND°</td>
<td>316500</td>
</tr>
<tr>
<td>FIG. 16</td>
<td>24</td>
<td>10:27:6:3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>115° C.</td>
<td>7500</td>
</tr>
<tr>
<td>Ex. 13</td>
<td></td>
<td>CF2=CFCl-OCF2-OCF2-CH2=CH2-CH2=CF2</td>
<td>5:9:41</td>
<td>0.209</td>
<td>0.006</td>
<td>0.013</td>
<td>133° C.</td>
<td>12450</td>
<td></td>
</tr>
<tr>
<td>Ex. 14</td>
<td></td>
<td>PDD:CF2-OCF2-OCF2-CH2=CH2</td>
<td>6:5</td>
<td>0.026</td>
<td>0.036</td>
<td>0.003</td>
<td>ND°</td>
<td>9461</td>
<td></td>
</tr>
<tr>
<td>Ex. 15</td>
<td></td>
<td>PDD:CF2-OCF2-OCF2-CH2=CH2</td>
<td>6:5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIG. 17</td>
<td>26</td>
<td>20:11</td>
<td>0.226</td>
<td>0.036</td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex. 16</td>
<td></td>
<td>CH2=CH2-CH2=CHCl</td>
<td>20:11</td>
<td>0.009</td>
<td>0.003</td>
<td>-0.00030</td>
<td>52° C.</td>
<td>82000</td>
<td></td>
</tr>
<tr>
<td>Ex. 17</td>
<td></td>
<td>PDD:CF2-OCF2-OCF2-CH2=CH2</td>
<td>1:2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figure, Ex. #</td>
<td>Sample Structure Name</td>
<td>A/μm 157 nm</td>
<td>A/μm 193 nm</td>
<td>A/μm 248 nm</td>
<td>Tg (°C)</td>
<td>Tm (°C)</td>
<td>Thick (angstroms)</td>
<td>Spin Speed (Rpm)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Ex. 18</td>
<td>28</td>
<td>2:1 PDD<sub>2</sub>CH<sub>2</sub>-CF<sub>2</sub></td>
<td>0.018</td>
<td>0.010</td>
<td>0.000057</td>
<td>59°</td>
<td>38298</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex. 19</td>
<td>31</td>
<td>5:3-1 (CF<sub>2</sub>CF<sub>2</sub>)<sub>10</sub>CH<sub>2</sub>-CHF<sub>2</sub></td>
<td>0.016</td>
<td>0.010</td>
<td>0.0022</td>
<td>71°</td>
<td>5289</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex. 19</td>
<td>32</td>
<td>1:1 (CF<sub>2</sub>CF<sub>2</sub>)<sub>10</sub>CH<sub>2</sub>-CH<sub>2</sub>-CH(OCF<sub>3</sub>)</td>
<td>0.350</td>
<td>0.047</td>
<td>0.107</td>
<td>90°</td>
<td>1350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex. 20</td>
<td>33</td>
<td>Poly[methyl(2-methylene-4,4'-dioxolane)]</td>
<td>0.603</td>
<td>-0.0007</td>
<td>-0.0001</td>
<td>135°</td>
<td>14818</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex. 21</td>
<td>34</td>
<td>1:1 PMD<sub>2</sub>-PDD<sup>2</sup></td>
<td>0.404</td>
<td>0.006</td>
<td>0.0022</td>
<td>147°</td>
<td>12762</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex. 22</td>
<td>35</td>
<td>1:1 PMD-PDD</td>
<td>0.085</td>
<td>0.002</td>
<td>0.002</td>
<td>35°</td>
<td>14818</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(A/μm) determined from VUV transmission based absorbance measurements, one result, marked by # was determined from VUV ellipsometry

2PDD = 4,5-di-fluoro-2,2-di-fluoromethyl-1,3-dioxolene
3PMD = Perfluorocyclohexane-4,4'-dioxide
4Teflon® AF 1601
5Teflon® AF 1200
6Monomers were loaded at 3:4 mol ratio. Polymer product not analyzed

Three of the acyclic polymer structures listed in Table 2 show no detectable UV absorption at 157 nm (polymers VF₂-HFP, HHIB:TrFE, and HHIB:VF). These are copolymers containing either vinylidene fluoride (VF₂) or hexafluorooctylisobutylene (HHIB). VF₂ and HHIB have a unique structural feature. Taken by example, for the hexafluorooctylisobutylene monomer can not form CH₂ runs longer than CH₂NCH₂ before the run is broken up by a —CH(=C≡CF)— segment. Similarly vinylidene fluoride can not form of CH₂ runs longer than CH₂NCH₂ before they are broken up by a C₂F₆ or C₂F₇, runs longer than C₂F₆C₂F₇ before they are broken up by a CH₂. That is, C=C≡C=C₂F₆ monomers such as PDD₂ and HHIB have the property of being "self-interrupting" when judges the potential for extended interactions between C—F bonds or extended interactions between C—H bonds. The five membered ring of PDD likely has a related effect by forcing conformations unfavorable for interaction. Comparing PDD/TFE copolymers #5, #7, and #8, absorption falls off from 0.6 to 0.4 to 0.0 as TFE content drops from 52 to 32 to 11 mole %. That is, transparency improves as increasing PDD content interrupts (CF₂)₂n runs. It is anticipated that other perfluorinated ring structures or partially fluorinated ring structures can be found that will serve the same interrupting function as PDD.

Solutions of TFE:HFP and TrFE:HFP were spin coated at spin speeds of 6000 rpm onto CaF₂ substrates to produce polymer films of 1850 angstroms and 1389 angstroms thicknesses respectively. VUV absorbance measurements were then used to determine the absorbance per micron.

The introduction of TrFE in place of TFE demonstrates another example of decreasing the 157 nm absorbance/micron. The absorbance in units of inverse microns for TFE:HFP and TrFE:HFP versus wavelength lambda (λ) in units of nanometers is shown in FIG. 8. The presence of the CHF carbons in the CF₂=CHF monomer interrupts extended CF₂n runs. This produces a decrease in the 157 nm absorbance of TFE:HFP of 3.9/micron to an absorbance/micron of 1.37/ micron for TrFE:HFP. This effect can also be understood as the absorption maxima of TFE:HFP polymer shifts to shorter wavelengths in the TrFE:HFP polymer.

Thus, we define a class of polymers highly transparent (A/μ₁, more preferably A/μ_{0.1}) to light of <186 nm made by homo or copolymerizing PDD and CX₂=CF₂ monomers (X≡—F or —CF₃ and Y≡—H) and optionally other monomers CR_nR'₀=CR'R_d where any one or all of R_d, R_d' or R_d'_d, may be H or F and where R_d'_d may be F, —CF₃, —OR_d'_d where RF_d'_d with n=1 to 5, and OH (when R_d'=H) as needed to introduce solubility or break crystallinity. When the CR'R_d=CR'R_d'_d monomer polymerizes randomly with PDD or the CX₂=CF₂ monomer, it can not be present to greater than ~25 mole percent because at higher concentrations the statistics start to allow CR'R_d=CR'R_d'_d runs long enough for noticeable absorption. As mentioned above, this is illustrated by the PDD:TTE copolymers in which A/μ drops from 0.6 to 0.4 to 0.0 as TFE content decreases from ~52 to 32 to 11 mole percent (Table 2, polymer Teflon® AF 1200, Teflon® AF 1601. Teflon® AF 2400 respectively). When the CR'R_d=CR'R_d'_d monomer polymers in an alternating fashion with PDD or the CX₂=CF₂ monomer, a higher concentration of the CR'R_d=CR'R_d'_d monomer can be tolerated. An example of this is the 1:1 HHIB:TFE copolymer which had an A/μ of ~0.05 (Table 2, polymer #3). Random and alternating structures of course are never 100%
ideal and some monomers naturally tend to either block or avoid polymerizing with themselves so the limits of 25% CRn^RR
transmission is maximized. (An etalon is a thin film in which thin film interference effects such as constructive and destructive interference of the light from the front and back surfaces of the constant thickness film gives rise to optical fringes in the wavelength dependence of the reflectance or transmission of the thin film (Principles of Optics, a book by Max Born and Emil Wolf, Pergamon Press, New York, 6th Edition, copyright 1980, PP 329–333). For a pellicle film thickness of 6059 angstroms, a 157 nm pellicle transmission is 65.7% while the 157 nm pellicle reflectance is 0.4%. The spectral transmission in absolute units versus the wavelength lambda in units of nanometers for a pellicle film of Teflon® AF 1601 designed as an unsupported tuned etalon with a film thickness of 6059 angstroms is shown in Figure 4. The interference fringes of the tuned etalon are clearly visible as a function of wavelength. The spectral reflectance in absolute units versus the wavelength lambda in units of nanometers for a pellicle film of Teflon® AF 1601 designed as an unsupported tuned etalon with a film thickness of 6059 angstroms is shown in Fig. 5. The interference fringes of the tuned etalon are clearly visible as a function of wavelength, and a minimum in the pellicle reflectance is seen at 157 nm which contributes to the maximized pellicle transmission at this lithographic wavelength. For a 157 nm pellicle film of Teflon® AF 1601 with a film thickness of 6335 angstroms, the tuned etalon will not be optimized for maximum pellicle transmission and the 157 nm pellicle transmission will be 59.4% while the 157 nm pellicle reflectance increases to 8.1%.

Transmission of a tuned etalon pellicle film of Teflon® AF 1601 at a lithographic wavelength of 157 nm as a function of the pellicle film thickness is shown in Fig. 6. The oscillations in the pellicle transmission with thickness arise due to the thin film interference fringes in the film and give rise to pellicle transmission maxima and minima. The optimum tuned etalon pellicle design will correspond to the film with sufficient mechanical integrity and a thickness such that the transmission is at a maxima. Still as can be seen, pellicles designed from this material have substantially lower transmissions than the target 98% transmission for a 157 nm pellicle.

Pellicles designed from Teflon® AF 1601 are not able to achieve transmission levels above 98%. Pellicles designed from Cytop™, which has a much higher 157,111 absorbance/micron, will have even lower 157 nm pellicle transmissions. This demonstrates that methods are needed to produce polymers with dramatically lower 157 nm absorbance/micron so as to meet the desired 157 nm transmission of 98% for a pellicle film. Therefore we need polymers with substantially lower absorbance/micron.

Example 1

PDD/TFE

Solutions of Teflon® AF 1200, 1601, and 2400 were spin coated at spin speeds of 6000 rpm onto CaF₂ substrates to produce polymer films of 4066 angstroms, 3323 angstroms and 2133 angstroms thicknesses respectively. VUV absorbance measurements were then used to determine the absorbance per micron.

The absorbance in units of inverse microns for Teflon® AF 1200 versus wavelength lambda (λ) in units of nanometers is shown in Fig. 7 for sample 8. The 157 nm absorbance/micron determined is 0.64/micron. The 193 nm absorbance/micron determined in 0.004/micron. The 248 nm absorbance/micron determined is –0.001/micron.

The absorbance in units of inverse microns for Teflon® AF 1601 versus wavelength lambda (λ) in units of nanometers is shown in Fig. 7 for Sample 7a. The 157 nm absorbance/micron determined is 0.42/micron. The 193 nm absorbance/micron determined is 0.02/micron. The 248 nm absorbance/micron determined is 0.01/micron.

The absorbance in units of inverse microns for Teflon® AF 2400 versus wavelength lambda (λ) in units of nanometers is shown in Fig. 7 for Sample 5. The 157 nm absorbance/micron determined is 0.0007/micron. The 193 nm absorbance/micron determined is –0.06/micron. The 248 nm absorbance/micron determined is 0.06/micron.

One way to dramatically reduce the 157 nm absorbance of a PDD/TFE polymer is by increasing the percentage of PDD in the polymer. The stiff linear member of PDD likely has a similar effect, as VF₂ and HFBF, of being “self-interrupting” when judging the potential for extended interactions between C—F bonds by forming unfavorable conformations. This is shown in Fig. 7 where the absorbance in units of inverse microns for Teflon® AF 1200, Teflon® AF 1601, and Teflon® AF 2400 versus wavelength lambda (λ) in units of nanometers demonstrate the decreasing 157 nm absorbance/micron for these polymers. Comparing PDD/TFE copolymers Teflon® AF 1200, 1601, and 2400, absorbance/micron at 157 nm falls off from 0.6 to 0.4/ micron to 0.01/micron as TFE content drops from 52 to 32 to 11 mole %. That is, transparency improves as increasing PDD content interrupts (CF₃)₃ runs. It is anticipated that other perfluorinated ring structures or partially fluorinated ring structures can be found that will serve the same interrupting function as PDD.

Example 2

Preparation of 1:1 Poly (hexafluoroisobutylenetrifluoroethylene)

A 75 ml stainless steel autoclave chilled to –20°C was loaded with 25 ml of CCl₃CF₂Cl and 5 ml of –0.17 M DP in Vertrel™ XF. The autoclave was cooled, evacuated, and then loaded with 10 g of trifluoroethylene and 20 g of hexafluorobutylene. The reaction mixture was shaken overnight at ambient temperatures (28 to 33°C), removed from the autoclave, and evaporated down to a glassy film that was further dried for 72 hours in a 75°C vacuum oven. There was obtained 3.33 g of white solid. A solution was made by rolling 3.24 g of this polymer with 6.99 g of 1-methoxy-2-propanol acetate (PGMEA). This solution was mixed with 0.2 g of chromatographic silica gel and 0.2 g of decolorizing carbon and then passed first through a 0.45μ glass microfiber syringe filter (Whatman, Autovial™) and then through a 0.45μ PTFE membrane syringe filter (Whatman, Autovial™). Fluorine NMR of this solution, integrating trifluoroethylene’s CHF fluorine at ~180 to ~220 ppm versus hexafluoroisobutylenes CF₃ fluorines at ~58 to ~65 ppm, found ~1:1 hexafluoroisobutylenetrifluoroethylene. This solution was used to spin coat thick films on optical substrate for absorption measurements.

Sample preparation and results:

Solutions of HFBF:TrFE were spin coated at spin speeds of 3000 rpm and 6000 rpm onto CaF₂ substrates to produce polymer films of 12,146 angstroms and 1500 angstroms thicknesses respectively. VUV absorbance measurements were then used to determine the absorbance per micron.

The absorbance in units of inverse microns for 3:2 HFBF: TrFE versus wavelength lambda (λ) in units of nanometers is shown in Fig. 9 for Sample 3a. The 157 nm absorbance/
micron determined from the thicker polymer film is 0.012/
micron. The 193 nm absorbance/micron determined is 0.005/micron. The 248 nm absorbance/micron determined is
-0.001/micron.

Example 3

Hfib/VF
Preparation of 3:2 Poly(hexafluoroisobutylene:Vinyl
Fluoride)
A 75 ml stainless steel autoclave chilled to <20°C was
loaded with 25 ml of CCl4/FCF3Cl and 10 ml of -0.07 M DP
in Vertrel™ XF. The autoclave was cooled, evacuated, and
further loaded with 16 g of hexafluoroisobutylene and 5 g of
viny fluoride. The reaction mixtures were shaken overnight
at ambient temperatures (18 to 26°C), removed as a thick
gel from the autoclave, evaporated, pumped down further
with a vacuum pump for 96 hours, and then dried 22 hours
in a 75°C vacuum oven. There was obtained 19 g of friable
white solid with a Tg of 58°C. (nitrogen, 10°C C/min,
second heat) and no detectable Tm.

| Cale for (Hfib)(VF): | 32.89% C | 2.07% H |
| Found: | 32.83% C | 2.08% H |

Solution preparation and results:
A solution was made by rolling 6 g of this polymer with 12 g of 2-heptanoate. This solution was passed through a
0.45μm glass microfiber syringe filter (Whatman, Autovalt™)
and the filtrate used to spin coat thick films on optical
substrate for absorption measurements.

Sample preparation and results:
Solutions of Hfib/VF were spin coated at spin speeds of
3000 rpm and 6000 rpm (revolutions per minute) onto CaF2
substrates to produce polymer films of 14,386 angstroms
and 2870 angstroms thicknesses respectively. VUV absorb-
bance measurements were then used to determine the absorb-
ance per micron.

The absorbance in units of inverse microns for 1:1
Hfib/VF versus wavelength lambda (λ) in units of nanom-
eters is shown in FIG. 9 for Sample 4a. The 157 nm
absorbance/micron determined from the thicker polymer
film is 0.027/micron. The 193 nm absorbance/micron deter-
mined is 0.020/micron. The 248 nm absorbance/micron
determined is 0.008/micron.

To determine the VUV optical properties of Hfib/VF,
VUV ellipsometry was performed on an Hfib/VF polymer
sample on a silicon wafer, and the index of refraction and
extinction coefficient shown in FIG. 10 was determined. The
157 nm index of refraction for Tellol® AF 1601 is 1.50. The
157 nm extinction coefficient determined corresponds to an
absorbance/micron of 0.022/micron and is also listed in
Table 2.

With these Hfib/VF optical properties, and the methods
of O. S. Heavens discussed above, one can design the tuned
etalon pellicle film, whereby the reflectance of the unsup-
ported pellicle film is minimized and the pellicle transmis-
sion is maximized. For a pellicle film thickmene of 3660
angstroms, a 157 nm pellicle transmission is 98% while the
157 nm pellicle reflectance is 0.68%. The spectral transmis-
sion in absolute units versus the wavelength lambda in units
of nanometers for the pellicle of Hfib/VF designed as an
supported tuned etalon with a film thickness of 3660 angstroms
and a 157 nm pellicle transmission of 98%.

Transmission of a tuned etalon pellicle film of Hfib/VF
at a lithographic wavelength of 157 nm as a function of the
pellicle film thickness is shown in FIG. 13. The oscilla-
tions in the pellicle transmission with thickness arise due to
the thin film interference fringes in the film and give rise to pellicle
transmission maxims and minima.

Example 4

Vf2/PDD
Sample preparation and results: A 75 ml autoclave was
loaded with 25 ml of C2F6/CICCl3, pre chilled to <20°C,
loaded further with 0.3 g of Perkadox™16N [bis(4-
butylcyclohexyl)peroxydicarbonate] and 20 g of PDD
evacuated, and 10.4 g of vinyldiene fluoride (VF2) added.
Heating 18 hours at 70°C. gave a thick oil. Evaporation in
air, drying 22 hours under pump vacuum, and drying 24
hours in a 75°C oven gave 17 g of hard white foam.

Elemental analysis, found:	28.99% C	1.11% H
Calculated (C6F5O2)2(C4H6F4):	29.05% C	1.08% H
DSC, 10°C C/min, nitrogen:	Tg = 56°C (first heat)	
Tg not detected second heat		

A viscous solution was prepared by rolling 4 g of poly(PDD/
VF2) with 16 g of hexafluorobenzene and filtering through an
0.45 micron glass fiber syringe filter [Whatman, Autovalt™]. The filtrate was used to spin coat thick films on
optical substrate for absorption measurements.

Solutions of VF2/PDD were spin coated at spin speeds of
6000 rpm onto CaF2 substrates to produce polymer films of 2097 angstroms thickness. VUV absorbance
measurements were then used to determine the absorbance per micron.

The absorbance in units of inverse microns for VF2/PDD versus wavelength lambda (λ) in units of nanometers is shown in FIG. 9 for Sample 2. The 157 nm absorbance/micron determined from the thicker polymer film is 0.041
micron. For this very transparent material, this demonstrates an antireflective coating effect thereby producing an negative
value of the 157 nm absorbance/micron. The 193 nm absorbance/micron determined is 0.02/micron.

The 248 nm absorbance/micron determined is 0.08/micron.

Example 5

Vf2/HFP
Sample preparation and results: A poly(vinyldiene
fluoride/hexafluoropropylene) sample made by the method
of U.S. Pat. No. 4,985,520 of Jan. 15, 1991) was character-
ized.

Composition by Fluorine NMR in Deuteracetone: 21
mole % VF2, 79 mole % HFP
DSC, 10°C C/min, nitrogen: Tg= 22.5°C. (second heat)
Inherent Viscosity, acetone, 25°C = 0.753 dL/g
Solutions of VF₂:HFP were spin coated at spin speeds of 3000 and 6000 rpm (revolutions per minute) onto CaF₂ substrates to produce polymer films of 69,800 angstroms and 1641 angstroms thickness. VUV absorbance measurements were then used to determine the absorbance per micron.

The absorbance in units of inverse microns for 79:21 VF₂:HFP versus wavelength lambda (λ) in units of nanometers is shown in FIG. 9 for Sample 1a. The 157 nm absorbance/micron determined from the thicker polymer film is 0.015/micron. The 193 nm absorbance/micron determined is 0.005/micron. The 248 nm absorbance/micron determined is 0.003/micron.

Example 6

VF₂:HFP, VF₂:PDD, HFB/TrFE Pellicles

Using polymers such as VF₂:HFP, VF₂:PDD, and HFB/TrFE, which have 157 nm absorbance/micron on the order of 0.01/micron, we can design coated etalon pellicles with high transmissions and substantial film thicknesses. FIG. 14 shows the transmission of a coated etalon pellicle film of a polymer with an absorbance per micron of 0.01 and an index of refraction of 1.50 at a lithographic wavelength of 157 nm as a function of the pellicle film thickness. Note that for pellicle film thicknesses up to 8371 angstroms, the maximum pellicle transmission is above the target specification of 98%.

Example 7

TFE/TrP

A. Polymerization of tetrafluoroethylene (TFE) with 3,3,3-trifluoropropene (TrP). A 240 ml autoclave was loaded with 20 ml of CF₃CICCl₂F, chilled to < 20°C, and 10 ml of -0.17 M DP in CF₃CFHCHFCF₂CF₃ added. The autoclave was further chilled, evacuated, and 10 g of TrP and 40 g of TFE added. After shaking overnight at room temperature, the autoclave was vented, and the fluid reaction mixture evaporated down, finishing with 48 hours at room temperature under pump vacuum. This gave 9.96 g of sticky, colorless gum.

Elemental analysis, found: 29.86C; 1.74 H. Calculated (C₄H₉F₁₀): 30.02C; 1.40 H. DSC, 10°C/min, nitrogen: Tg = 8.8°C. (second heat).

Solution preparation and results:

A solution was prepared by rolling 4 g of poly(TFE/TrP) with 12 g of hexafluorobenzene and filtering through a 0.45μm glass microfiber syringe filter (Whatman, Autovial). The filtrate was used to spin coat thick films on optical substrate for absorption measurements.

Solutions of 5.6 TFP:TFE were spin coated onto CaF₂ substrates to produce polymer films of 41413 angstroms thickness. VUV absorbance measurements were then used to determine the absorbance per micron.

The absorbance in units of inverse microns for 5:6 TFP:TFE versus wavelength lambda (λ) in units of nanometers is shown in FIG. 15 for Sample 17. The 157 nm absorbance/micron determined is 0.149/micron. The 193 nm absorbance/micron determined is 0.008/micron. The 248 nm absorbance/micron determined is 0.00085/micron.

B. Use as a Glue for Quartz and Aluminum. An aluminum coupon measuring 1” wide by 3” long by 122 mil thick and a quartz slide measuring 1” wide by 3” long by 65 mil thick were both rinsed with CF₃CICCl₂F and air dried.

Rolling 4 g of the poly(ME/TrP) prepared above with 12 g of hexafluorobenzene at room temperature gave a clear, colorless solution that was passed through a 0.45μm glass fiber filter. Three drops of this solution were placed on one end of the aluminum coupon and a quartz slide pressed down on top so that the last inch of the quartz slide overlapped with the last inch of the aluminum coupon. This caused any excess fluid to squeeze out and the remaining polymer solution to wet and spread out evenly over the area of overlap. Two C-clamps (stock #72020, ACCO USA Inc., 770-S ACCO Plaza, Wheeling, Ill. 60090) were used to hold the aluminum coupon and quartz slide in place while the hexafluorobenzene solvent evaporated for three days at room temperature. One such assembly with C-clamps still attached was heated for 16 hours in a 50°C vacuum oven. The assembly was taken from the oven, cooled, the C-clamps removed, and the force required to pull the quartz slide away from the aluminum coupon measured in an Instron using a 3” jaw separation and a crosshead speed of 1” per minute. Twelve pounds of force were required. A second such assembly with C-clamps still attached was heated for 20 hours in a 50°C vacuum oven and then for 24 hours in a 75°C vacuum oven. Now the Instron required 127 pounds of force to pull the aluminum coupon and the quartz slide apart.

C. Use as a Glue for a Pellicle Polymer. Pellicle polymer poly(HFB/TrFE) was prepared as a film by dissolving 10 g of poly(HFB/TrFE) (Example 2A below) in 40 g of 2-heptane, adding 1 g of decolorizing carbon+1 g of chromatographic alumina+1 g of chromatographic silica gel filtering through a 0.45μm PTFE syringe filter, casting on Teflon™ FEP sheet with a 5 mil casing knife, and air drying. The poly(HFB/TrFE) film prepared in this fashion could be lifted off the Teflon™ FEP sheet as clear, colorless film roughly 0.5 to 1 mil thick.

Glue solution was prepared next. Solution was made by dissolving 0.1 g of the poly(TFE/TrP) prepared above in 1 g of hexafluorobenzene.

This glue solution was used to make several <1/2” spots on an aluminum coupon measuring 1” wide by 3” long by 122 mil thick. These glue spots were air dried for 39 minutes and then the coupon was placed in a 60°C air oven for 8 minutes. As soon as the aluminum coupon was withdrawn hot from the oven, poly(HFB/TrFE) film samples were pressed down on top of the poly(TFE/TrP) deposits with light finger pressure. The poly(HFB/TrFE) film firmly wetted and adhered to the poly(TFE/TrP) spots. While the aluminum coupon was still hot, the poly(HFB/TrFE) film could be pulled away with difficulty and stretching. Once, however, the aluminum coupon returned to room temperature, the poly(HFB/TrFE) film tore rather than peeled free from the aluminum. The adhesive bond between the glue polymer [poly(TFE/TrP)] and the pellicle polymer [poly(HFB/TrFE)] is quite strong, exceeding the strength of the pellicle polymer.

Example 8

HFB/TrF

A. Polymerization of Hexafluoroisobutylylene (HFB) with Vinyl Fluoride (VF). A 400 ml autoclave was loaded with 200 ml water and 0.05 g of Vazo™ 56 WSP initiator. The autoclave was cooled and evacuated and then 80 g of hexafluoroisobutylylene and 25 g of vinyl fluoride added. After shaking for 48 hours at 50°C, the autoclave was vented, and an opalescent blue emulsion recovered. The emulsion was broken by vigorous agitation in a Waring blender, filtered,
and washed four times in the Waring blender with 100 ml of methyl alcohol. Drying for 6 days under pump vacuum gave 30 g of white powder and lumps.

Elemental analysis, found: 34.80% C; 2.51% H.

Calculated (C2F5F3)2(C2H5F)3: 34.79% C; 2.51% H.

DSC, 10° C/min, nitrogen: Tg=70° C. (second heat) Tm not detected.

Inherent Viscosity, THF: 25° C.: 0.379 dL/g.

GPC in THF: Mw=192,000.

Mn 92,000.

A sample of poly(HFIB/VE) was prepared a second time by the same emulsion polymerization method and its thermal transitions looked at in detail by modulated DSC. On the second heat, glass transitions were detected at both 69.5° C. and 195° C. No melting transitions were observed on either first or second heats.

Solution preparation and results: A solution was made by rolling 10 g of the polymer with 40 g of 2-heptanone and filtering through a 0.45μm glass microfiber syringe filter (Whatman, Autoviv). The filtrate was used to spin coat thick films on optical substrates for absorption measurements.

Solutions of HFIB-VE were spin coated onto CaF2 substrates to produce polymer films of 9239 angstroms thickness. VUV absorbance measurements were then used to determine the absorbance per micron.

The absorbance in units of inverse microns for HFIB-VE versus wavelength lambda (λ) in units of nanometers is shown in Fig. 3 for Sample 18. The 157 nm absorbance/micron determined is 0.005/micron. The 193 nm absorbance/micron determined is 0.0082/micron. The 248 nm absorbance/micron determined is 0.002/micron.

B. Use as a Glue for Quartz and Aluminum. An aluminum coupon measuring 1" wide by 3" long by 122 mil thick and a quartz slide measuring 1" wide by 3" long by 65 mil thick were both rinsed with CF2CICCl3 and air dried. About 0.2 g of the poly(VF2/PMVE) was chopped into 3 to 4 small pieces and placed on one end of the aluminum coupon. A quartz slide was pressed down on top so that the last inch of the quartz slide overlapped with the last inch of the aluminum coupon. This caused any excess fluid to squeeze out and the remaining polymer solution to wet and spread out evenly over the area of overlap. Two C-clamps (stock #72020, ACCO USA Inc., 770-S ACCO Plaza, Wheeling, Ill. 60090) were used to hold the aluminum coupon and quartz slide in place while the acetone solvent evaporated for three days at room temperature. One such assembly with C-clamps still attached was heated for 16 hours in a 50° C. vacuum oven. The assembly was taken from the oven, cooled, the C-clamps removed, and the force required to pull the quartz slide away from the aluminum coupon measured in an Instron using a 3" jaw separation and a crosshead speed of 1"/minute. One pound of force was required. A second such assembly with C-clamps still attached was heated for 16 hours in a 50° C. vacuum oven and then for 24 hours in a 75° C. vacuum oven. Now the Instron required 0.6 pounds of force to pull the aluminum coupon and the quartz slide apart.

Example 9

VF2/PMVE

A. Polymerization of Vinyldiene Fluoride (VF2) with Perfluoromethylvinyl Ester (PMVE). A ~210 ml autoclave was loaded with 50 ml of CF2CICCl3 and 10 ml of ~0.2 DP in CF3CFHCFHCF2CF3 added. The autoclave was cooled and evacuated and loaded with 33 g perfluoromethylvinyl ether (PMVE) and 13 g vinylidene fluoride (VF2). Shaking the autoclave overnight at room temperature gave solution that was evaporated down to soft polymer and then further dried for 29 hours under vacuum and for 20 hours in a 75° C. vacuum oven. This gave 31 g of soft polymer suitable for use as a glue.
Solution preparation and results: A solution was made by rolling 4 g of this polymer with 16 g of hexafluorobenzene. This solution was passed through a 0.45 μm glass microfiber syringe filter (Whatman, Autovial™) and the filtrate used to spin coat thick films on optical substrate for absorption measurements.

Solutions of 13:10 VF2:PMVE were spin coated onto CaF₂ substrates to produce polymer films of 25,970 angstroms thickness. VUV absorption measurements were then used to determine the absorbance per micron.

The absorbance in units of inverse microns for 13:10 VF2:PMVE versus wavelength lambda (λ) in units of nanometers is shown in FIG. 16 for Sample 20. The 157 nm absorbance/micron determined is 0.034/micron. The 193 nm absorbance/micron determined is 0.016/5/micron. The 248 nm absorbance/micron determined is 0.0018/micron.

Example 11

VF2/PPVE

A. Polymerization of Vinylidene Fluoride (VF2) with Perfluoro(propyl Vinyl Ether) (PPVE). A 210 ml autoclave was loaded with 50 ml of CF₂Cl₂, CF₃C(═C)CF₃, and 10 ml of 0.2 M DP in the autoclave was cooled and 13 g VF2 and 53 g PPVE added. After shaking overnight at ambient temperature (22–26°C), the autoclave was vented, and the solution recovered. Excess solvent was evaporated under nitrogen, and the polymer dried 72 hours under vacuum at room temperature and then for 28 hours at 75°C, 45 g.

Elemental analysis, found: 26.17%; C; 0.88% H. Calculated (C₂F₄H₂)₃: 26.34% C; 0.79% H. DSC, 10°C/min, nitrogen: Tg = 15°C. (second heat). Inherent Viscosity, hexafluorobenzene, 25°C: 0.169 dl/g.

Solution preparation and results:

A solution was made by rolling 4 g of this polymer with 16 g of hexafluorobenzene. This solution was passed through a 0.45 μm glass microfiber syringe filter (Whatman, Autovial™) and the filtrate used to spin coat thick films on optical substrate for absorption measurements.

Solutions of 7:5 VF2:PPVE were spin coated onto CaF₂ substrates to produce polymer films of 29,874 angstroms thickness. VUV absorbance measurements were then used to determine the absorbance per micron.

The absorbance in units of inverse microns for 7:5 VF2:PPVE versus wavelength lambda (λ) in units of nanometers is shown in FIG. 15 for Sample 21. The 157 nm absorbance/micron determined is 0.002/micron. The 193 nm absorbance/micron determined is 0.0004/micron. The 248 nm absorbance/micron determined is 0.00006/micron.

B. Use as a Glue for a Pellicle Polymer. Poly(HFIB/VF) was prepared as a polymer film by dissolving 10 g of poly(HFIB/VF) (Example 8 above) in 40 g of 2-heptanone, adding 1 g of decolorizing carbon+1 g of chromatographic alumina+1 g of silica gel, filtering through an 0.45 μm PTFE syringe filter, casting on Teflon™ FEP sheet with a 5 mil casting knife, and air drying. The poly(HFIB/VF) film prepared in this fashion could be lifted off the Teflon™ FEP sheet as clear, colorless film roughly 0.5 to 1 mil thick.

Glue solution was prepared next. Solution was made by dissolving 0.1 g of the poly(VF2/PPVE) prepared above in 1 g of hexafluorobenzene. This glue solution was used to make a ½” spot on an aluminum coupon measuring 1” wide by 3” long by 122 mil thick. This glue spot was air dried for 30 minutes and then the coupon was placed in a 62°C oven under nitrogen for 13 minutes. As soon as the aluminum coupon was withdrawn hot form the oven, a poly(HFIB/VF) film sample was pressed down on top of the poly(VF2/PPVE) deposit with light finger pressure. Once the aluminum coupon returned to room temperature, the poly(HFIB/VF) film tore when either pulled as in a lap shear or peeled back. The adhesive bond between the glue polymer [poly (VF2/PPVE)] and the pellicle polymer [poly(HFIB/VF)] was quite strong, exceeding the strength of the pellicle polymer.

Example 12

VF2/HFP

A. Poly(vinylidene fluoride/hexafluoropropylene (VF2/HFP) Sample. A vinylidene fluoride/hexafluoropropylene sample made by the method of U.S. Pat. No. 4,985,520 of Jan. 15, 1991 was characterized

Composition by Fluorine NMR in Deuteroacetone: 21 mole % VF2, 79 mole % BFP. DSC, 10°C/min, nitrogen: Tg = 22.5°C. (second heat). Inherent Viscosity, acetone, 25°C: 0.753 dl/g.

Solution preparation and results: A solution was made by rolling 3 g of poly(VF2/HFP) with 17 g of 2-heptanone and filtering through a 0.45 μm glass microfiber syringe filter (Whatman, Autovial™). The filtrate used to spin coat thick films on optical substrate for absorption measurements.

Solutions of 79:21 VF2/HFP were spin coated onto CaF₂ substrates to produce polymer films of 13,000 angstroms thickness. VUV absorbance measurements were then used to determine the absorbance per micron. The absorbance in units of inverse microns for 79:21 VF2/HFP versus wavelength lambda (λ) in units of nanometers is shown in FIG. 15 for Sample 22. The 157 nm absorbance/micron determined is 0.014/micron. The 193 nm absorbance/micron determined is 0.002/micron. The 248 nm absorbance/micron determined is 0.0006/micron.

B. Use as a Glue for Quartz and Aluminum. An aluminum coupon measuring 1” wide by 3N long by 122 mil thick and a quartz slide measuring 1” wide by 3” long by 65 mil thick were both rinsed with CF₂Cl₂ and air dried. About 0.2 g of the poly(VF2/HFP) was chopped into 3 to 4 small pieces and placed on one end of the aluminum coupon. A quartz slide was pressed down on top so that the last inch of the quartz slide overlapped with the last inch of the aluminum coupon. Two C-clamps (stock #72020, ACCO USA Inc., 770-S ACCO Plaza, Wheeling, Ill. 60090) were used to hold the aluminum coupon and quartz slide in place and the assembly with C-clamps still attached placed in a 76–80°C C. vacuum oven for 22 hours causing the polymer to spread out as a clear, colorless layer. The assembly was taken from the oven, cooled, the C-clamps removed, and the force required to pull the quartz slide away from the aluminum coupon measured in an Instron using a 3” jaw separation and a crosshead speed of 1”/minute. A force of 133.3 lbs was required. A second similarly prepared sample required 121.6 pounds of force to pull apart for an average force of 127 lbs. In second of the two experiments the separation occurred in
the polymer layer, residual polymer being retained on both the aluminum and the quartz. In the first of the two experiments the separation occurred between the polymer and the glass. In either event, residual polymer could be pulled cleanly off the glass and the aluminum as a single piece.

C. Use as a Glue for a Pellicle Polymer. Poly(HFIB/VF) was prepared as a polymer film by dissolving 10 g of poly(HFIB/VF) (Example 2A above) in 40 g of 2-heptanone, adding 1 g of decolorizing carbon+1 g of chromatographic alumina+1 g of silica gel, filtering through an 0.45μm PTFE syringe filter, casting on Teflon™ FEP sheet with a 5 ml casting knife, and air drying. The poly(HFIB/VF) film prepared in this fashion could be lifted off the Teflon™ FEP sheet as clear, colorless film roughly 0.5 to 1 mil thick.

Glue solution was prepared next. Solution was made by dissolving 0.1 g of the poly(VF2/HFP) prepared above in 1 g of hexafluorobenzene.

This glue solution was used to make a ~½" spot on an aluminum coupon measuring 1" wide by 3" long by 121 mil thick. This glue spot was air dried for 39 minutes and then the coupon was placed in a 62° C. nitrogen blanketed oven for 13 minutes. As soon as the aluminum coupon was withdrawn hot from the oven, a poly(HFIB/VF) film sample was pressed down on top of the poly(VF2/HFP) deposit with light finger pressure. Once the aluminum coupon returned to room temperature, the poly(HFIB/VF) film tore when pulled as in a lap shear. When the poly(HFIB/VF) film was peeled back on itself, adhesive failure occurred between the poly(VF2/HFP) glue and the aluminum, the poly(VF2/HFP) adhesive layer coming away clean from the aluminum and showing no debonding from the poly(HFIB/VF). This shows excellent adhesion between the pellicle polymer [poly(HFIB/VF)] and the glue polymer [poly(VF2/HFP)].

Example 13
HFP/PMVE/VF2

A 210 ml Hastelloy C autoclave was chilled to ~20° C. and loaded with 20 ml of ~0.17 M DP in C2F2CHFCFHCF2C3 added. The autoclave was evacuated and loaded with 33 g perfluoro(methyl vinyl ether) (PMVE), 26 g vinylidene fluoride (VF2), 26 g of hexafluoropropylene (HFP), and 1 g of anhydrous hydrogen chloride (chain transfer agent). Shaking the autoclave overnight at room temperature gave colorless oil that was devilatized for 24 hours in air, 10 hours under pump vacuum, and then for five days in a 75° C vacuum oven, giving 47 g of clear, tacky resin suitable for use as a glue.

Composition by Fluorine NMR:
- 63.1 mole % VF2
- 27 mole % PMVE
- 10 mole % HFP

Inherent viscosity, acetone, 25° C.: 0.120 dL/g

Solution preparation and results: A solution was made by rolling 4 g of this polymer with 12 g of 2-heptanone to give a hazy solution. This solution was passed through a 0.45μm glass microfiber and Teflon™ syringe filters (Whatman, Autovial™) and the filtrate used to spin coat thick films on optical substrate for absorption measurements.

Solutions of 10:27:63 HFP/PMVE/VF2 were spin coated onto CaF2 substrates to produce polymer films of 316,500 angstroms thickness. VUV absorbance measurements were then used to determine the absorbance per micron.

The absorbance in units of inverse microns for 10:27:63 HFP/PMVE/VF2 versus wavelength lambda (λ) in units of nanometers is shown in FIG. 16 for Sample 23. The 157 nm absorbance/micron determined is 0.008/micron. The 193 nm absorbance/micron determined is ~0.00048/micron. The 248 nm absorbance/micron determined is ~0.00045/micron.

Example 14
HFIB/VF

An 85 ml autoclave was loaded with two ½" diameter stainless steel balls, sealed, evacuated, chilled to ~20° C., and 10 ml of ~0.17 M DP in C2F2CHFCFHCF2C3 sucked in. The autoclave was further chilled and 70 g hexafluorosiloxylene (HFIB) added at ~50° C. and 10 psig liquid vinyl fluoride (VF) added at ~35° C. The now liquid fall autoclave was shaken and allowed to warm to room temperature. Pressure in the clave maxed out at 7780 psi at 25° C., finishing at 103 psig at 29° C. About 10 hours into the run. Drying the solid polymeric product for 72 hours under pump vacuum gave 57 g of white solid with a glass transition temperature of 115° C.

Calc. for (HFIB2)(VF)11:
- 33.04% C
- 2.11% H
- 33.02% C
- 2.51% H

Inherent Viscosity, THF, 25° C.: 0.183 dL/g

Solution preparation and results: A solution was made by rolling 12 g of this polymer with 48 g of 2-heptanone. This solution was passed through a 0.45μm glass microfiber and Teflon™ syringe filters (Whatman, Autovial™) and the filtrate used to spin coat thick films on optical substrate for absorption measurements.

Solutions of 10:7 HFIB/VF were spin coated onto CaF2 substrates to produce polymer films of 7500 angstroms thickness. VUV absorbance measurements were then used to determine the absorbance per micron.

The absorbance in units of inverse microns for 10:7 HFIB/VF versus wavelength lambda (λ) in units of nanometers is shown in FIG. 16 for Sample 24. The 157 nm absorbance/micron determined is ~0.013/micron. The 193 nm absorbance/micron determined is ~0.016/micron. The 248 nm absorbance/micron determined is ~0.011/micron.

A 75 ml autoclave was loaded with 25 ml of C2F2CICCl3F, chilled to ~20° C. and 10 ml of ~0.2 M DP in C2F2CHFCFHCF2C3 and 11.6 ml of PDD added. The autoclave was evacuated and loaded with 4.5 g perfluoro (methyl vinyl ether) (PMVE). Shaking the autoclave overnight at room temperature gave a gelatinous product that was evaporated down and then further dried for 29 hours under vacuum and for 20 hours in a 75° C. vacuum oven. This gave 18 g of product.
was used to spin coat thick films on optical substrate for absorption measurements.

Solutions of 6.5 PDD:PFMVE were spun coated onto CaF2 substrates to produce polymer films of 12,450 angstroms thickness. VUV absorbance measurements were then used to determine the absorbance per micron.

The absorbance in units of inverse microns for 6.5 PDD:PFMVE versus wavelength lambda (λ) in units of nanometers is shown in FIG. 16 for Sample 25. The 157 nm absorbance/micron determined is 0.209/micron. The 193 nm absorbance/micron determined is 0.006/micron. The 248 nm absorbance/micron determined is 0.013/micron.

Example 16

VF:CIDE

A 75 ml autoclave was loaded with 25 ml of CF3CICClF3, chilled to <-20° C., and 10 ml of 0.17 M DP in CF3CFHCFHF3CF3 added. The autoclave was evacuated and loaded with 6.9 g of vinyl fluoride (VF) and 9.8 g 1-chloro-2,2-difluoroethylene (CIDE). Shaking the autoclave overnight at room temperature gave damp paste that was dried for 4 days under pump vacuum and for 28 hours in a 75° C. vacuum oven. This gave 8 g of product.

Calc. for (C2H5)2(CF3H)Cl: 37.16% C, 3.57% H
Found: 37.99% C, 3.30% H
DSC, 30° C/min, nitrogen: Tg = 97° C. (first heat)
Inherent Viscosity, acetone: 0.220 dL/g

Solution preparation and results: A solution was made by rolling 4 g of this polymer with 16 g of heptane. This solution was passed through a 0.45μm glass microfiber syringe filter (Whatman, Autovial™) and the filtrate used to spin coat thick films on optical substrate for absorption measurements.

Solutions of 20:11 VF:CIDE were spun coated onto CaF2 substrates to produce polymer films of 9461 angstroms thickness. VUV absorbance measurements were then used to determine the absorbance per micron.

The absorbance in units of inverse microns for 20:11 VF:CIDE versus wavelength lambda (λ) in units of nanometers is shown in FIG. 17 for Sample 26. The 157 nm absorbance/micron determined is 0.226/micron. The 193 nm absorbance/micron determined is 0.036/micron. The 248 nm absorbance/micron determined is 0.003/micron.

Example 17

PDD:VF2

A 75 ml autoclave was chilled to <-20° C. and loaded with 10 ml of CF3CFHCFHF3CF3, 5 ml of -0.17 M DP in CF3CFHCFHF3CF3, and 20 g of PDD. The autoclave was evacuated and loaded with 13 g vinylidene fluoride (VF2). Shaking the autoclave overnight at room temperature gave viscous oil that was devolatilized in air, 32 hours under pump vacuum, and then for 23 hours in a 75° C. vacuum oven, giving 16 g of white resin.

Calc. for (PDD)(2)(VF2): 29.05% C, 1.08% H.
Found: 29.35% C, 1.08% H.
DSC, 10° C/min, nitrogen: 52° C. (weak)
Inherent Viscosity, hexafluorobenzene, 25° C.: 0.278.

Solution preparation and results: A solution was made by rolling 2 g of poly(PDD:VF2) with 8 g of 2-hexafluorobenzene. This solution was passed through a 0.45μm glass microfiber syringe filter (Whatman, Autovial™) and the filtrate used to spin coat thick films on optical substrate for absorption measurements.

Solutions of 1:2 PDD:VF2 were spun coated onto CaF2 substrates to produce polymer films of 82,000 angstroms thickness. VUV absorbance measurements were then used to determine the absorbance per micron.

The absorbance in units of inverse microns for 1:2 PDD:VF2 versus wavelength lambda (λ) in units of nanometers is shown in FIG. 18 for Sample 27. The 157 nm absorbance/micron determined is 0.007/micron. The 193 nm absorbance/micron determined is 0.003/micron. The 248 nm absorbance/micron determined is 0.00030/micron.

Example 18A

PD:VF2

A 75 ml autoclave was chilled to <20° C. and loaded with 20 ml of CF3CFHCFHF3CF3, 5 ml of -0.17 M DP in CF3CFHCFHF3CF3, and 20 g of PFDD. The autoclave was evacuated and loaded with 6 g vinylidene fluoride (VF2). Shaking the autoclave overnight at room temperature gave viscous oil and that was devolatilized in air, 32 hours under pump vacuum, and then for 23 hours in a 75° C. vacuum oven, giving 16 g of white resin.

Calc. for (CF3O)2(C2H5)Cl: 26.11% C, 0.37% H.
Found: 26.03% C, 0.53% H.
DSC, 10° C/min, nitrogen: 96° C. (weak)
Inherent Viscosity, hexafluorobenzene, 25° C.: 0.671.

Solution preparation and results: A hazy solution was made by rolling 2 g of poly(PDD:VF2) with 18 g of 1H-perfluorohexane. This solution was passed through an 0.45μm glass microfiber syringe filter (Whatman, Autovial™) with the aid of a pad of chromatographic silica gel to help in the filtration, additional 2-H-perfluorohexane added to approximately replace that lost to evaporation, and then filtered again through an 0.45μm Teflon™ syringe filter (Whatman, Autovial™). The now clear filtrate was used to spin coat thick films on optical substrate for absorption measurements.

Example 18B

PDD:VF2

A Teflon™ coated 400 ml stainless steel autoclave chilled to <20° C. was loaded with 90 ml of CF3CFHCFHF3CF3, 30 ml of -0.1 M DP in CF3CFHCFHF3CF3, and 120 g of PDD. The autoclave was pressured to 100 psi with nitrogen and evacuated ten times. Finally 58 g of vinylidene fluoride (VF2) were added and the autoclave shaken overnight at room temperature. The resulting thick gel was dried under nitrogen, then under pump vacuum, and finally for 4 days in a 75° C. vacuum oven, giving 122 g of white resin.

Calc. for (C3F7O)2(C2H5)Cl: 28.42% C, 0.93% H.
Found: 28.22% C, 1.16% H.
DSC, 10° C/min, nitrogen: 59° C.
Inherent Viscosity, hexafluorobenzene, 25° C.: 0.576.

Solution preparation: A solution was made by rolling 1.70 g of the poly(PDD:VF2) with 15.3 g of hexafluorobenzene. Filtration through a 0.45μm glass fiber microfiber syringe filter (Whatman Autovial™) gave clear, colorless solution. The
filtrate was used to spin coat films on optical substrate for absorption measurements.

Solutions of 5:8 PDD:VF2 were spin coated onto CaF2 substrates to produce polymer films of 38,298 angstroms thickness. VUV absorbance measurements were then used to determine the absorbance per micron.

The absorbance in units of inverse microns for 5:8 PDD:VF2 versus wavelength lambda (λ) in units of nanometers is shown in FIG. 19 for Sample 29. The 157 nm absorbance/micron determined is 0.018/micron. The 193 nm absorbance/micron determined is 0.010/micron. The 248 nm absorbance/micron determined is 0.000057/micron.

Example 19A

HFB/VF2/VF

A 210 ml Hastelloy C autoclave was loaded with 50 ml of CF2CICl2F, chilled to <-20° C, and 15 ml of 0.2 M DP in CF2CICl2PFC1F3 added. The autoclave was evacuated and loaded with 32 g hexafluoroisobutylene (HFB), 3 g vinylidene fluoride (VF2), and 7 g vinyl fluoride (VF). Shaking the autoclave overnight at room temperature gave a thick paste of white solids that was dried under nitrogen, for 70 hours under pump vacuum, and for 23 hours in a 75° C. vacuum oven. This gave 33 g of product having an analysis matching a range of possible stoichiometries.

Calc. for (C2H2F3)3(C2H2F3)N(C2H2F3)4:	31.91% C	1.84% H
Calc. for (C2H2F3)2(C2H2F3)2(C2H2F3)3:	31.78% C	1.83% H
Found:	31.78% C	1.88% H
DSC, 10° C/min, nitrogen:	Tg = 48° C.	
Inherent Viscosity, acetone, 25° C.:	0.030 dl/g	

Solution preparation and results: A hazy solution was made by rolling 1 g of this polymer with 20 g of heptane. This solution was passed through a 0.45µ glass fiber syringe filter (Whatman, Autovial™), a 0.45µ Teflon™ syringe filter (Whatman, Autovial™), and a 0.45µ Teflon™ syringe filter (Whatman, Autovial™) with the aid of a 1 g pad of chromatographic alumina to aid in the filtration. The now clear filtrate was used to spin coat thick films on optical substrate for absorption measurements.

Example 19B

HFB/VF/VF2

A 400 ml autoclave was loaded with 200 ml deionized water, 0.05 g Vazo™ 56 WSP initiator, and pressurized to 100 psi with nitrogen and evacuated ten times. The autoclave was chilled to <-20° C, evacuated, and further loaded with 82 g of hexafluoroisobutylene (HFB), 13 g of vinylidene fluoride (VF2), and 14 g of vinyl fluoride (VF). The contents of the autoclave were shaken for ~64 hours at 50° C. The resulting mix of solids plus emulsion was frozen and thawed. Vacuum filtration and washing twice in the filter with 200 ml of water gave white fluffy solid with some darker yellow chunks that were removed. The remaining white fluff was washed twice more in the filter with 150 ml of methyl alcohol. Sucking the white fluff dry on the filter and then further drying for 5 days under pump vacuum gave 16 g of polymer.

Composition by fluorne NMR: 41 mole % HFB, 37 mole % VF, 22 mole % VF2.

DSC, 10° C/min, nitrogen | 71° C.

Inherent Viscosity, tetrahydrofuran, 25° C.: 0.523.

Solution preparation: A solution was made by rolling 3 g of poly(HFB/VF/VF2) with 17 g of 2-heptanone. Filtration through a 0.45µ glass fiber microfiber syringe filter and then through a 0.45µ PTFE syringe filter (Whatman Autovial™) gave a clear but faintly yellow solution. This filtrate was used to spin coat films on optical substrate for absorption measurements.

Solutions of 41:37:22 HFB/VF/VF2 were spin coated onto CaF2 substrates to produce polymer films of 5289 angstroms thickness. VUV absorbance measurements were then used to determine the absorbance per micron.

The absorbance in units of inverse microns for 41:37:22 HFB/VF/VF2 versus wavelength lambda (λ) in units of nanometers is shown in FIG. 19 for Sample 31. The 157 nm absorbance/micron determined is 0.016/micron. The 193 nm absorbance/micron determined is -0.010/micron. The 248 nm absorbance/micron determined is -0.002/micron.

Example 20

PDD/TrFE

A 76 ml autoclave was loaded with 50 ml of water and 0.1 g of Vazo™ 56 WSP initiator. The autoclave was cooled to <-20° C and 10 g of PDD added. The autoclave was evacuated and 5 g of trifluoroethylene (TrFE) added. Shaking for 10 hours at 70° C gave a lump of polymer that was separated and dried for 72 hours in a 76° C. vacuum oven, 9.9 g.

| Elemental analysis, found: | 25.51% C | 0.55% H |
| Calculated (C2F6O2)2(CFH2)4: | 25.79 | 0.31% H |
| DSC, 10° C/min, nitrogen: Tg = 150° C. (weak, second heat) |
| Inherent Viscosity,Hexafluoroethane, 25° C.: | 1.3 dl/g |

Solution preparation and results: A solution was made by rolling 1 g of the polymer with 33 g of Fluorinert™ FC-75 and filtering through a 0.45µ glass microfiber syringe filter (Whatman, Autovial™). The filtrate was used to spin coat thick films on optical substrate for absorption measurements.

Solutions of 1:1 PDD/TrFE were spin coated onto CaF2 substrates to produce polymer films of 7688 angstroms thickness. VUV absorbance measurements were then used to determine the absorbance per micron.

The absorbance in units of inverse microns for 1:1 PDD/TrFE versus wavelength lambda (λ) in units of nanometers is shown in FIG. 16 for Sample 9. The 157 nm absorbance/micron determined is 0.03/micron. The 193 nm absorbance/micron determined is -0.004/micron. The 248 nm absorbance/micron determined is -0.001/micron.

Example 21

CTFE/VF

A 75 ml autoclave was loaded with 25 ml of CF2CICl2F, chilled to <-20° C, and 5 ml of -0.1 M DP in CF2CICl2PFC1F3 added. The autoclave was evacuated and loaded with 17 g of chlorotrifluoroethylene (CTFE) and 7 g vinyl fluoride (VF). Shaking the autoclave overnight at room temperature gave a swollen gel that was dried in air, for 96 hours under pump vacuum, and for 25 hours in a 75° C. vacuum oven. This gave 18 g of polymer.
Solution preparation and results: A solution was made by rolling 2 g of this polymer with 15 g of heptane. This solution was passed through a 0.45 µm glass fiber syringe filter (Whatman, Autovial™) and the filtrate used to spin coat thick films on optical substrate for absorption measurements.

Solutions of 1:1 CTFE:VF were spin coated onto CaF₂ substrates to produce polymer films of 1850 angstroms thickness and 17,644 angstroms thickness. VUV absorbance measurements were then used to determine the absorbance per micron.

The absorbance in units of inverse microns for 1:1 CTFE:VF versus wavelength lambda (λ) in units of nanometers is shown in FIG. 18 for Sample 6b. The 157 nm absorbance/micron determined from the thicker film is 0.388/micron. The 193 nm absorbance/micron determined from the thicker film is 0.016/micron. The 248 nm absorbance/micron determined from the thicker film is 0.006/micron.

Sample 10
VF2/TrFE

A 75 ml autoclave was loaded with 25 ml of CF₃C=CCl₂F, chilled to <-20°C, and 5 ml of 4.1 M DP in CF₃CFCHFCH₂FCF₃ added. The autoclave was evacuated and loaded with 9.6 g of vinylidene fluoride (VF2) and 12 g trifluoroethylene (TrFE). Shaking the autoclave overnight at room temperature gave a damp white solid that was dried under pump vacuum and then 24 hours in a 75°C vacuum oven. This gave 14 g of polymer.

Solution preparation and results: A solution was made by rolling 3.11 g of this polymer with 34.32 g of 1-methoxy-2-propanol acetate. The resulting hazy solution with particulates passed with difficulty through an 0.45 µm glass fiber syringe filter (Whatman, Autovial™). Evaporation of 2.82 g of this solution gave 0.220 g of residue (7.8 wt % solids vs. 8.3% expected if no solids eliminated by filtration). Thick films were spin coated on optical substrate for absorption measurements.

Solutions of 5.2 VF2:TrFE were spin coated onto CaF₂ substrates to produce polymer films of 4500 angstroms thickness. VUV absorbance measurements were then used to determine the absorbance per micron.

The absorbance in units of inverse microns for 5.2 VF2:TrFE versus wavelength lambda (λ) in units of nanometers is shown in FIG. 18 for Sample 10. The 157 nm absorbance/micron determined is 0.924/micron. The 193 nm absorbance/micron determined is 0.188/micron. The 248 nm absorbance/micron determined is 0.083/micron.
Composition by Fluorine NMR: 2 mole % HFP, 98 mole % TrFE.

DSC, 10° C./min, nitrogen: Tm=179° C., Tg not detected.
Inherent Viscosity, acetone, 25° C.: 0.912 dL/g.

Solution preparation: Rolling 2.5 g of poly(HFP/TrFE) with 50 ml of propylene glycol methyl ether acetate gave a hazy solution. Filtration through an 0.45μm PTFE syringe filter (Whatman, Autovial™) gave clear filtrate. The filtrate was used to spin coat thick films on optical substrate for absorption measurements.

Solutions of 2.98 HFP/TrFE were spin coated onto CaF₂ substrates to produce polymer films of 1389 angstroms thickness. VUV absorbance measurements were then used to determine the absorbance per micron.

The absorbance in units of inverse microns for HFP/TrFE versus wavelength lambda (μ) in units of nanometers is shown in FIG. 8 for Sample 12. The 157 nm absorbance/micron determined is 1.37/micron. The 193 nm absorbance/micron determined is 0.143/micron. The 248 nm absorbance/micron determined is ~0.02/micron.

Sample 14
HFP/TFE

Hexafluoropropylene(HFP)/tetrafluoroethylene(TFE) copolymer was prepared by the method of U.S. Pat. No. 5,478,905 of Dec. 26, 1995. This polymer was 60 wt % HFP, 40 wt % TFE, and had an inherent viscosity of 0.407 dL/g (in Fluorinert™ FC-75 solvent at 25° C.).

Solution preparation: Rolling 3.16 g of HFP/TFE copolymer with 986 g of PF-5080 (Performance Fluid manufactured by 3M, believed to be largely perfluorooctanes) gave solution. Vacuum filtration through an 0.45μm filter gave clear solution. The filtrate was used to spin coat thick films on optical substrate for absorption measurements.

Solutions of 1:1 HFP:TFE were spin coated onto CaF₂ substrates to produce polymer films of 1850 angstroms thickness. VUV absorbance measurements were then used to determine the absorbance per micron.

The absorbance in units of inverse microns for 1:1 HFP:TFE versus wavelength lambda (μ) in units of nanometers is shown in FIG. 8 for Sample 14. The 157 nm absorbance/micron determined is 3.9/micron. The 193 nm absorbance/micron determined is 0.868/micron. The 248 nm absorbance/micron determined is 0.073/micron.

Sample 15
VF2/CTFE

A 75 ml autoclave chilled to <-20° C. was loaded with 25 ml of CF₂CICICICF₂ and 5 ml of 0.1 M DP in CF₂CFCICICF₂. The autoclave was evacuated and loaded with 9.6 g of vinylidene fluoride (VF2) and 17 g of chlorotrifluoroethylene (CTFE). Shaking the autoclave overnight at room temperature gave viscous white fluid that was evaporated down to stretchy solid and then dried for 1 hour under pump vacuum and for 30 hours in a 75° C. vacuum oven. This gave 19 g of product.

Calc (C₂F₅H₂)₂(CF₂Cl₂): 27.59% C, 1.28% H, 18.04% Cl
Found: 27.26% C, 1.41% H, 17.91% Cl
DSC, 10° C./min, nitrogen: Tg=59° C.
Inherent Viscosity, acetone, 25° C.: 0.546 dL/g.

Solution preparation: Rolling 3 g poly(VF2/CTFE) with 20 g of 2-heptanone gave solution that was filtered through an 0.45μm glass fiber syringe filter (Whatman, Autovial™). The filtrate was used to spin coat thick films on optical substrate for absorption measurements.

Solutions of 5:4 VF2/CTFE were spin coated onto CaF₂ substrates to produce polymer films. VUV absorbance measurements were then used to determine the absorbance per micron.

The absorbance in units of inverse microns for 5:4 VF2/CTFE versus wavelength lambda (μ) in units of nanometers is shown in FIG. 8 for Sample 15. The 157 nm absorbance/micron determined is 5.6/micron. The 193 nm absorbance/micron determined is 0.27/micron. The 248 nm absorbance/micron determined is 0.12/micron.

Sample 16
PMD/TFE

A 75 ml autoclave chilled to <-20° C. was loaded with 5 ml of -0.14 M DP in CF₂CFHCFCFCF₂, 25 ml of CF₂CFHCFCFCF₂, and 11.6 ml of perfluoro(2-methylene-4-methyl-1,3-dioxolane) (PMD). The tube was evacuated and further loaded with 5 g of tetrafluoroethylene (TFE). Shaking overnight at room temperature gave a milky, viscous oil. Evaporation under nitrogen, 76 hours under pump vacuum, and 24 hours in a 75° C. vacuum oven gave 20 g of resin assumed to be a ~2:1 copolymer of PMD:TFE (monomers mixed in ~2PMD:1TFE ratio).

DSC, 10° C./min, nitrogen: Tg not detected.
Inherent Viscosity, Fluorinert™ FC-75, 25° C.: 0.142 dL/g.

Solution preparation: Rolling 2.14 g of poly(PMD/TFE) with 26.2 g of Fluorinert™ FC40 gave a hazy solution that was passed through an 0.45μm glass fiber filter (Whatman, Autovial™), through an 0.45μm glass fiber syringe filter (Whatman, Autovial™) after mixing with 0.2 g chromatographic silica+0.2 g of decolorizing carbon, and finally through an 0.45μm PTFE syringe filter (Whatman, Autovial™). The filtrate was used to spin coat thick films on optical substrate for absorption measurements.

Solutions of 1:1 PMD:TFE were spin coated onto CaF₂ substrates to produce polymer films of 2207 angstroms thickness. VUV absorbance measurements were then used to determine the absorbance per micron.

The absorbance in units of inverse microns for 1:1 PMD:TFE versus wavelength lambda (μ) in units of nanometers is shown in FIG. 8 for Sample 16. The 157 nm absorbance/micron determined is 1.17/micron. The 193 nm absorbance/micron determined is ~0.015/micron. The 248 nm absorbance/micron determined is 0.07/micron.

Example 28
PMD/TFE

A 1 ounce glass Sample vial equipped with rubber septum was flushed with nitrogen, chilled on dry ice, and then 3 ml of perfluoro(2-methylene-4-methyl-1,3-dioxolane) and 0.5 ml of ~0.17 M DP in CF₂CFHCFCFCF₂ injected. The vial was set in water ice and allowed to warm slowly to room temperature over the next several hours with magnetic stirring. After ~62 hours at room temperature the contents of the vial, a stiff foam, were dried under pump vacuum and then for 17 hours in a 150° C. vacuum oven, giving 4.1 g of white fines after crushing with a spatula.

DSC, 10° C./min, nitrogen: Tg=135° C.
Inherent Viscosity, hexafluorobenzene, 25° C. 0.155 dL/g.
Solution preparation: Rolling 2 g of poly(PMD) with 18 g hexafluorobenzene gave a solution that was filtered through an 0.45 μ glass fiber syringe filter (Whatman, Autovial™). The filtrate was used to spin coat thick films on optical substrate for absorption measurements.

Solutions of PMD were spin coated onto CaF₂ substrates to produce polymer films of 14,818 angstroms thickness. VUV absorbance measurements were then used to determine the absorbance per micron.

The absorbance in units of inverse microns for PMD versus wavelength lambda (λ) in units of nanometers is shown in FIG. 17 for Sample 33. The 157 nm absorbance/micron determined is 0.603/micron. The 193 nm absorbance/micron determined is ~0.0007/micron. The 248 nm absorbance/micron determined is ~0.0001/micron.

Example 29

PMD/PDD

A 1 ounce glass sample vial equipped with rubber septum was flushed with nitrogen, chilled on dry ice, and then 3 ml of perfluorooctyl(2-methylene-4-methyl-1,3-dioxolane) (PMD), 3 ml of PD and 0.5 ml of ~0.17 M DP in CF₃CFHCFHCF₂CF₃ injected. The vial was set in water ice and allowed to warm slowly into room temperature over the next several hours with magnetic stirring. After ~82 hours at room temperature the contents of the vial, a stiff foam, were dried under pump vacuum and then for 17 hours in a 150°C vacuum oven, giving 8.6 g of white fine after crushing with a spatula.

Solution preparation: Rolling 2 g of poly(PMD/PDD) with 18 g hexafluorobenzene gave a somewhat gelatinous partial solution that was passed through a ~1/8" inch deep pad of chromatographic silica gel in an 0.45 μ glass fiber syringe filter (Whatman, Autovial™). A portion of this solution was sent for 19F NMR which found the composition of the dissolved polymer to be 30 mole % PMD and 50 mole % PDD. The remaining filtrate was used to spin coat thick films on optical substrate for absorption measurements.

Solutions of PMD/PDD were spin coated onto CaF₂ substrates to produce polymer films of 12,762 angstroms thickness. VUV absorbance measurements were then used to determine the absorbance per micron.

The absorbance in units of inverse microns for PMD/PDD versus wavelength lambda (λ) in units of nanometers is shown in FIG. 17 for Sample 34. The 157 nm absorbance/micron determined is 0.404/micron. The 193 nm absorbance/micron determined is 0.006/micron. The 248 nm absorbance/micron determined is ~0.002/micron.

Example 30

PMD/VF2

A 75 ml autoclave chilled to ~<20°C. was loaded with 5 ml of ~0.17 M DP in CF₃CFHCFHCF₂CF₃, 15 ml of CF₃CFHCFHCF₂CF₃, and 11.6 ml of perfluoro(2-methylene-4-methyl-1,3-dioxolane) (PMD). The autoclave was pressurized with 300 psi of nitrogen and evacuated ten times and then further loaded with 13.9 g of vinylidene fluoride (VF2). Shaking overnight at room temperature gave white solid. Evaporation under nitrogen, 16 hours under pump vacuum, and 32 hours in a 77°C vacuum oven gave 23 g of resin.

Sample 11

PPD/CTFE

Poly(PDD/chlorotrifluoroethylene), poly(PDD/CTFE), has been reported many times in the literature as for example in U.S. Pat. No. 4,754,009. The poly(PDD/CTFE) used here was prepared by aqueous emulsion polymerization.

Solution preparation: Rolling 2.5 g of poly(PDD/CTFE) with 30 ml of hexafluorobenzene gave a pale yellow solution that was passed through an 0.45 11 glass fiber filter (Whatman Autovial™). Because this solution was too viscous to easily spin coat, 11.2 g of this solution was diluted down with another 10.1 g of hexafluorobenzene. This diluted solution was used to spin coat thick films on optical substrate for absorption measurements.

Solutions of 10:23 PDD/CTFE were spin coated onto CaF₂ substrates to produce polymer films of 1903 angstroms thickness. VUV absorbance measurements were then used to determine the absorbance per micron.

The absorbance in units of inverse microns for 10:23 PDD/CTFE versus wavelength lambda (λ) in units of nanometers is shown in FIG. 18 for Sample 11. The 157 nm absorbance/micron determined is 1.44/micron. The 193 nm absorbance/micron determined is 0.018/micron. The 248 nm absorbance/micron determined is 0.046/micron.

What is claimed is:

1. A process or method comprising causing electromagnetic radiation in the wavelength range of 140 to 186 nanometers to be emitted from a source thereof;
2. Disposing in the path of at least a portion of the so emitted radiation a receptor responsive to electromagnetic radiation in the wavelength range of 140 to 186 nanometers so that a pattern in space or time is thereupon imposed;
3. Disposing between said source and said receptor at least one optical element having an absorbance/micrometer of <1 said optical element comprising an amorphous polymer selected from the group consisting of a copolymer of CH₂=CHCF₃ and CF₂=CF₂, a copolymer of CH₂=CH and CF₂=CFCl, a copolymer of CH₂=CH and CH=CF₂, wherein said copolymers the molar ratio of monomers ranges from approximately 1:2 to approximately 2:1; a copolymer...
comprising two or more different monomer units represented by the formula CX＝CH2, where X is F or CF3; a copolymer of ≈60 mole % 4,5-difluoro-2,2-bis(trifluoromethyl)-1,3-dioxolane and one or more monomers represented by the formula CX＝CH2, where X is F or CF3; a copolymer of perfluoro(2-methylene-4-methyl-1,3-dioxolane) and 4,5-difluoro-2,2-bis(trifluoromethyl)-1,3-dioxolane; a copolymer of perfluoro(2-methylene-4-methyl-1,3-dioxolane) and vinylidene fluoride; poly(perfluoro(2-methylene-4-methyl-1,3-dioxolane)); a copolymer of hexafluoroisobutylene and trifluoroethylene; and a copolymer of hexafluoroisobutylene and vinyl fluoride;

and,

extracting information from the pattern so imposed.

2. The process or method of claim 1 wherein said copolymer comprises one or more monomers selected from the group CX＝CH2, where X is —F or —CF3 and 4,5-difluoro-2,2-bis(trifluoromethyl)-1,3-dioxolane, and one or more monomers represented by the formula CX＝CH2, where X is F or CF3, a copolymer of perfluoro(2-methylene-4-methyl-1,3-dioxolane) and vinylidene fluoride; poly(perfluoro(2-methylene-4-methyl-1,3-dioxolane)); a copolymer of hexafluoroisobutylene and trifluoroethylene; and a copolymer of hexafluoroisobutylene and vinyl fluoride;

and,

extracting information from the pattern so imposed.

3. The process or method of claim 2 wherein said copolymer further comprises up to 25 mole % of one or more monomers CR

R′R″=CR′R″ = CR′R″ = CR′R‖
21. The optical system of claim 20 where the copolymer is >75 mole % vinylidene fluoride and >25 mole % hexafluoropropylene.
22. The optical system of claim 12 wherein the copolymer is 60-40 mole % vinyl fluoride and 40-60 mole % chlorotrifluoroethylene.
23. The process or method of claims 1, 2, 3, or 4 wherein the at least one optical element is a pellicle.
24. The process or method of claims 1, 2, 3, or 4 wherein the at least one optical element is an anti-reflective coating.
25. The process or method of claims 1, 2, 3, or 4 wherein the at least one optical element comprises an optically clear glue comprising the polymer thereof.
26. The process or method of claims 1, 2, 3, or 4 wherein the at least one optical element is a light guide.
27. The process or method of claims 1, 2, 3, or 4 wherein the at least one optical element is a photosensitive.
28. The process or method of claim 27 wherein the photosensitive further comprises solubility responsive monomers.
29. The optical system of claims 20, 21, or 22 wherein the at least one optical element is a pellicle.
30. The optical system of claims 20, 21, or 22 wherein the at least one optical element is an anti-reflective coating.
31. The optical system of claims 20, 21, or 22 wherein the at least one optical element comprises an optically clear glue comprising the polymer thereof.
32. The optical system of claims 20, 21, or 22 wherein the at least one optical element is a light guide.
33. The optical system of claims 20, 21, or 22 wherein the at least one optical element is a photosensitive.
34. The optical system of claim 27 wherein the photosensitive further comprises solubility responsive monomers.
35. The process or method of claims 1, 2, 3, or 4 wherein the at least one optical element has an absorbance per micrometer of <0.8 at wavelengths from 140 to 186 nanometers.
36. The process or method of claims 1, 2, 3, or 4 wherein the at least one optical element has an absorbance per micrometer of <0.2 at wavelengths from 150 to 160 nanometers.
37. The process or method of claims 1, 2, 3, or 4 wherein the at least one optical element has an absorbance per micrometer of <0.1 at wavelengths from 155 to 159 nanometers.
38. The process or method of claim 1 adapted for use in photolithography.
39. The optical system of claim 12 in the form of a photolithography system.
40. The optical system of claims 12, 13, 14, or 15 wherein the at least one optical element has an absorbance per micrometer of <0.8 at wavelengths from 140 to 186 nanometers.
41. The optical system of claims 12, 13, 14, or 15 wherein the at least one optical element has an absorbance per micrometer of <0.2 at wavelengths from 150 to 160 nanometers.
42. The optical system of claims 12, 13, 14, or 15 wherein the at least one optical element has an absorbance per micrometer of <0.1 at wavelengths from 155 to 159 nanometers.
43. A process for the preparation of films of poly(4,5-difluoro-2,2-bis(trifluoromethyl)-1,3-dioxole) having thickness greater than 250 nm and having an absorbance/micrometer of <1 at 140-186 nm, comprising the steps of: a) placing monomer, optionally diluted with solvent and/or initiator, in the location where the film is desired, and b) initiating polymerization by physical and/or chemical means.
44. A copolymer composition comprising poly(hexafluorodisobutylene-trifluoroethylene) with 40-60 mole % hexafluorodisobutylene and 60-40 mole % trifluoroethylene having an absorbance/micrometer of <1 at 140-186 nm.